Розробка моделі блоку «синхронний генератор-випрямлювач» електропередачі дизель-потягу з використанням нейронних мереж

Розробка, дослідження системи керування на основі нейронної мережі
АНАЛІЗ МЕТОДІВ РОЗРОБКИ СИСТЕМ КЕРУВАННЯ ЕЛЕКТРОПРИВОДОМ ДИЗЕЛЬ-ПОТЯГУ РОЗРОБКА МОДЕЛІ СИСТЕМИ КЕРУВАННЯ ЕЛЕКТРОПЕРЕДАЧІ ДИЗЕЛЬ-ПОТЯГУ Моделювання пристроїв САК об’єкта керування Розробка моделі блоку «синхронний генератор-випрямлювач» електропередачі дизель-потягу з використанням нейронних мереж РОЗРОБКА СИСТЕМИ КЕРУВАННЯ ЗА ДОПОМОГОЮ МЕТОДІВ НЕЧІТКОЇ ЛОГІКИ І НЕЙРОННИХ МЕРЕЖ ДЛЯ ОПТИМІЗАЦІЇ ДИНАМІЧНИХ ПРОЦЕСІВ ЕЛЕКТРОПРИВОДА Розробка регуляторів системи керування електропередачі дизель-потяга з використанням нейронних мереж Розробка системи керування дизель-потяга на основі нейромережевих технологій ДОСЛІДЖЕННЯ СИСТЕМ КЕРУВАННЯ ДИЗЕЛЬ-ПОТЯГА Дослідження регуляторів системи керування, розроблених на основі використання методів нечіткої логіки і нейромережевих технологій ЕКОНОМІЧНА ОЦІНКА Й ОБГРУНТУВАННЯ Конкуренція Оцінка ризику та страхування Параметри мікроклімату Випромінювання від екрана ЦИВІЛЬНА ОБОРОНА
162243
знака
21
таблица
52
изображения

2.3.  Розробка моделі блоку «синхронний генератор-випрямлювач» електропередачі дизель-потягу з використанням нейронних мереж

Аналіз і синтез систем керування складними енергетичними об’єктами, до яких відноситься електропередача дизель-потягу з асинхронним тяговим електроприводом, нерозривно пов’язані з питаннями створення їхніх моделей з метою проведення комплексних досліджень, а також уточненням структури та параметрів пристроїв для розробки.

Питанням моделювання окремих блоків системи керування електропередач потягів присвячено значне число робіт. Однак традиційні підходи викликають труднощі при вирішенні вказаних задач. Тому постійно йде пошук у напрямку створення моделей на основі досягнень сучасних комп’ютерних технологій рішення цих задач, зокрема нейромережевих технологій. Однією із задач при вирішенні цих проблем є адаптація відомих архітектур нейронних мереж для побудови моделей компонентів структури САР енергетичної системи дизель-потягу.

У нашому випадку об'єктом моделювання є блок "синхронний генератор-випрямлювач". Його моделювання виконаємо за допомогою нейронних мереж.

Математичну модель блоку "синхронний генератор-выпрямитель" можна представити сукупністю моделей синхронного генератора (СГ) і випрямлювача (У).

Відповідно до загальноприйнятих допущень математичну модель СГ, що представляє собою ідеалізовану явнополюсну синхронну машину, яка має на роторі обмотку збудження і по одному короткозамкненому контуру в подовжній і поперечній осях, у координатній системі d, q можна представити наступною системою диференціальних рівнянь (2.26):


;

;

;  (2.26)

;

,

Де  – відповідно потокозчеплення та струми обмоток: статора (по осям d і q), збудження і демпферних (по осям d і q);

 – активні опори обмоток статора, збудження та демпферних (по осям d і q);

– кутова частота обертання ротора.

Облік насичення магнітного кола в явнополюсних синхронних машинах зазвичай вироблятися тільки по подовжній осі. Для цього у вираженнях для потокозчеплень індуктивний опір реакції якоря по подовжній осі представляють як функцію подовжньої складовий потокозчеплення в повітряному зазорі . У цьому випадку вираження для потокозчеплень контурів синхронної машини по подовжній осі мають наступний вид:

; (2.27)

; (2.28)

; (2.29)

; (2.30)

, (2.31)

де  – відповідно опори розсіювання обмоток статора, збудження та демпферної по осі d;

 – опір реакції якоря подовжній осі (2.31).

У результаті рішення системи рівнянь (2.26) з урахуванням виразів (2.27)-(2.31) визначаються струми статорної обмотки по осям d і q - і . Фазні струми СГ , що являються впливом, яке задає, для математичної моделі некерованого трифазного випрямлювача, знаходяться за допомогою лінійних перетворювань:

; (2.32)

; (2.33)

; (2.34)

, (2.35)

де  – значення кута при t = 0.

Напруга обурення  і  визначається згідно до виразів:


; (2.36)

, (2.37)

де  - фазні напруги СГ, одержувані за допомогою перетворювача, що формує ці напруги на основі фазних струмів СГ.

Реалізація математичної моделі, заданої системою диференціальних рівнянь (2.26) і рівняннями (2.27) - (2.37) з використанням сучасних пакетів прикладних програм, наприклад пакета MATLAB, не викликає особливих труднощів. Вона зводиться до побудови структури моделі з наявної бібліотеки блоків пакета і розрахунку параметрів моделі.

У ряді випадків моделювання блоку "синхронний генератор-випрямлювач" можна здійснити, використовуючи його навантажувальні характеристики, представлені на рис. 2.9.

Здатність штучних нейронних мереж, навчених на деякій множині даних, видавати правильні результати для досить широкого класу нових даних є дуже вагомим аргументом для побудови моделей різних систем. У даному випадку ця властивість нейронної мережі підходить для створення моделі блоку "синхронний генератор-випрямлювач " за навантажувальними характеристиками. При цьому робота моделі полягає в наступному: на вхід подаються струми збудження  (формування струму збудження розглянуто в розділі 2.2) і навантаження  , на виході повинне формуватися випрямлена напруга , значення якої відповідає графікам навантажувальних характеристик (рис 2.9.) Причому мережа повинна працювати не тільки на тренувальних шаблонах, але і виконувати поставлену задачу на всіх припустимих значеннях вхідних сигналів.


Рис. 2.9. Навантажувальні характеристики СГ.

Для побудови моделі обрана багатошарова нейронна мережа прямої передачі сигналів із двома нейронами у вхідному шарі (кількість входів), двома схованими шарами й одним нейроном у вихідному шарі. Для нейронів схованих шарів використовувалися нелінійні сигмоїдальні функції активації нейронів.

У результаті моделювання знайдене оптимальне число нейронів для першого і другого схованих шарів мережі, відповідно 10 і 15 нейронів. Для навчання мережі використовувалися дані рис.2.9.

Погрішність відтворення характеристик у всьому робочому діапазоні за допомогою нейронної мережі не перевищувала 1,5%, що краще, ніж у моделей, реалізованих традиційним способом.



Информация о работе «Розробка, дослідження системи керування на основі нейронної мережі»
Раздел: Транспорт
Количество знаков с пробелами: 162243
Количество таблиц: 21
Количество изображений: 52

Похожие работы

Скачать
76071
1
6

... інші території. На додаток до цього моделі прогнозування в СППР та основані на реальних знаннях системи часто використовуються як настільні, розраховані на одного користувача системи. Системи підтримки прийняття рішень набули широкого застосування в економіках передових країн світу, причому їхня кількість постійно зростає. На рівні стратегічного управління використовується ряд СППР, зокрема для ...

Скачать
57417
2
12

... періоді. Цей прогноз після Кабінету Міністрів України його головних показників є орієнтиром для підготовки пропозицій про визначення економічної політики на середньостроковий період. 3. ПРОГНОЗУВАННЯ РОЗВИТКУ ДИНАМІКИ УКРАЇНИ ЯК ГОСПОДАРСЬКОЇ СИСТЕМИ Порядок виконання роботи: а) Введення вихідних даних і одержання похідних рядів. Ввів в таблицю часові ряди, що відповідають вихідним даним ...

Скачать
33705
0
0

... різця й шорсткості обробленої поверхні; - розробити методику оцінки й визначити ймовірність руйнування різців, які оснащені круглими алмазно-твердосплавними пластинами. Об'єкт досліджень – процес чистового та напівчистового точіння силумінів різцями, які оснащені АТП. Предмет досліджень – надійність інструментів з алмазних композиційних НТМ на прикладі АТП, реєстрація та аналіз сигналів АЕ. ...

Скачать
67019
4
10

... , хоча воно й може змінюватися при зміні інформації, що зберігається в базі даних. 2.4 Опис програми, форм, звітів Файлом, що запускає інформаційну систему «Облік мобільних терміналів» є здійсненний файл PR.EXE. Розглянемо дії користувача при роботі з системою. Оператор системи обліку і аналізу розрахунків з постачальниками (менеджер) запускає програму на виконання (виконувальний файл PR.exe ...

0 комментариев


Наверх