3.2. Решение отобранных учителем задач из №2 домашнего задания.
Учащиеся выполняют предложенное им задание: один ученик решает у доски, остальные – в тетради; автор задачи выступает в роли учителя: контролирует выполнение задания, объясняет при затруднениях. Если задач отобрано мало (или не отобрано), то выполняются задания, предложенные учителем: самостоятельно, с последующей проверкой.
Решите уравнения:
1.
2.
3.
4.
5.
6.
7.
8.
4. Подведение итогов занятия.
- Понравилось ли быть в роли учителя?
- Какое из предложенных заданий (составленное одним из вас) показалось вам наиболее сложным?
Оценивание своей работы на занятии: поднимают руку те, кто считает, что поработал на оценку «5»; «4»; «3». Учитель подтверждает или изменяет оценки. Баллы ставятся в табель.
5. Постановка домашнего задания:
I. №1. Решите: а); б).
№2. При каких значениях параметра а уравнение имеет два различных положительных корня?
№3. При каких значениях а неравенство не имеет решений?
II. Класс разбивается на группы по 7-9 человек. Каждый ученик получает задание подготовить билет с вопросам теоретического и практического характера по заданной теме, по которой будет проводить опрос одноклассников из своей группы на следующем занятии.
Задачи по темам:
1. Число корней квадратного трехчлена. 2. Знаки корней квадратного трехчлена. 3. Соотношение на корни квадратного уравнения. 4. Расположение параболы относительно оси абсцисс. 5. Расположение корней квадратного трехчлена. 6. Графические приемы решения квадратных уравнений и неравенств. 7. Решение квадратных уравнений и неравенств с параметром. |
Все темы распределяются между членами группы. Билет с придуманными заданиями за несколько дней до занятия сдаётся учителю на проверку, затем, если требуется, то дорабатывается, а потом используется на занятии.
Литература: [1], [3], [6], [8], [12], [13], [17], [21], [25], [28], [32], [33].
Занятие XII. Разные задачи
Цели: способствовать формированию умений по составлению заданий по теме; проверить знания, умения, навыки учащихся по изученному материалу.
Ход урока:
1. Организационный момент.
Ученикам объясняется ход занятия: работа проходит внутри группы в парах сменного состава; каждый ученик знает решение и теоретический вопрос своего билета и опрашивает по нему каждого ученика своей группы, при этом выполняя задания своего партнера; если возникает необходимость, то ребята поясняют решения своих упражнений.
Схема смены партнера представлена в таблице 6.
Таблица 6
1 круг | 2 круг | 3 круг | 4 круг | 5 круг | 6 круг | 7 круг |
1уч – 2 уч 3уч – 4уч 5уч - 6уч 7уч – 8уч | 1 - 3 2 – 4 5 – 7 6 - 8 | 1 – 4 2 – 3 5 – 8 6 - 7 | 1 – 5 2 – 6 3 – 7 4 - 8 | 1 – 6 2 – 5 3 – 8 4 - 7 | 1 – 7 2 – 8 3 – 5 4 - 6 | 1 – 8 2 – 7 3 – 6 4 - 5 |
... -иллюстративного и репродуктивного метолов, а экономический профиль ориентирован на формирование прикладного стиля мышления. 2. Методика проведения элективных курсов по математике в профильной школе 2.1 Цели организации элективных курсов по математике Принципиальным положением организации школьного математического образования в настоящее время является дифференциация обучения ...
... на уроках алгебры и занятиях элективного курса по математике, участие проектной группы в городской конференции по данной теме в 2006 году. Объектом исследовательской работы было решение уравнений с параметрами, связанных со свойствами выше представленных функций. Структура данной работы включает в себя теорию, практическую часть, заключение, библиографический список. Решение уравнений с ...
... учебник и задачник / А. П. Кисилев, Н.А. Рыбкин. – М.: Дрофа, 1995. 9. Изучение личности школьника / под. ред. Л.И. Белозеровой. – Киров, Информационный центр, 1991. 10. Коновалова, В.С. Решение задач на построение в курсе геометрии как средство развития логического мышления / В.С. Коновалова, З.В. Шилова // Познание процессов обучения физике: сборник статей. Вып.9. – Киров: Изд-во ...
... Этим числам соответствуют три точки: A (), B () и C (). Они расположены на единичной окружности и делят ее на три равные части (рис. 18). Рис. 18. Задача 42. Изобразите на плоскости комплексные числа , удовлетворяющие условию: . Решение , значит, и . Получили две точки: B () и C () (рис. 19). Рис. 19. Задача 43. Изобразите множество точек комплексной плоскости, удовлетворяющих условию: ...
0 комментариев