СХЕМОТЕХНИЧЕСКОЕ ПРОЕКТИРОВАНИЕ

Разработка конструкции и технологии изготовления модуля управления временными параметрами
Конструкторско-технологические требования РАЗРАБОТКА КОНСТРУКЦИИ УСТРОЙСТВА СХЕМОТЕХНИЧЕСКОЕ ПРОЕКТИРОВАНИЕ РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ СХЕМЫ Конструкторско-технологический расчет элементов печатного рисунка Обоснование выбора материалов и применяемых конструкторских решений Размещение элементов и трассировка печатной платы средствами САПР Оценка качества разработанной конструкции Расчет показателей надежности устройства Описание конструкции модуля Выбор способа герметизации Разработка технологического процесса сборки модуля ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ДИПЛОМНОГО ПРОЕКТА Расчёт затрат по статье “Отчисления в фонд социальной защиты населения” Расчет стоимостной оценки затрат Расчет единовременных затрат Расчет чистой прибыли от реализации продукции ОХРАНА ТРУДА И ЭКОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ
138399
знаков
23
таблицы
10
изображений

4 СХЕМОТЕХНИЧЕСКОЕ ПРОЕКТИРОВАНИЕ

4.1 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ УСТРОЙСТВА

Модуль реализован на базе цифрового микроконтроллера МС68НС711Е9 фирмы Motorola.Данный модуль выполняет следующие функции:

-          -ввод с клавиатуры требуемого значения времени ,вывод текущего значения времени на жидкокристаллический дисплей;

-          -регистрация текущего значения времени и контролируемого параметра в энергонезависимой памяти;

-          -выдачу сообщения об отклонении сигнала от заданного на ЖКИ и центральный компьютер;

-          -обмен информацией с центральным компьютером типа IBM PC ;

-          -регулирование контролируемого параметра во времени по заданному закону.

Проанализировав выполняемые функции выделим следующие структурные элементы:

-      силовая часть;

-      электрическая развязка;

-      управление уровнем выходного сигнала;

-      наборное поле;

-      сброс микроконтроллера при включении и снижении питания ниже уровня 0,5 В ;

-      датчик входного сигнала;

-      аналогово-цифровой преобразователь входного сигнала;

-      микроконтроллер;

-      ЦАП выходного сигнала для ЖКИ;

-      индикация;

-      преобразование уровней сигнала для связи с центральным компьютером.

Взаимосвязи между этими структурными элементами приведены в приложении .

4.2 ВЫБОР И ОБОСНОВАНИЕ ПРИМЕНЯЕМОЙ ЭЛЕМЕНТНОЙ БАЗЫ

Выбор элементной базы необходимо производить исходя из условий эксплуатации устройства. Таким образом, ко всем электрорадиоэлементам схемы, ко всем конструкционным материалам и изделиям предъявляются те же требования, что и ко всему устройству в целом.

Выбор ЭРЭ производится на основе требований к аппаратуре, в частности, кинематических, механических и других воздействий при анализе работы каждого ЭРЭ и каждого материала внутри блока, и условий работы каждого блока конструкции.

Выбор резисторов будем производить учитывая:

-     эксплуатационные факторы (интервал рабочих температур, относительную влажность окружающей среды, атмосферное давление и др.);

-     значение электрических параметров и их допустимое отклонение в процессе эксплуатации (номинальное сопротивление, допуск, и др.)

-     показатели надежности и долговечности;

-     конструкцию резисторов, способ монтажа, массу.

В целях повышения надежности и долговечности резисторов (и других ЭРЭ), во всех возможных случаях следует использовать их при менее жестких нагрузках и в облегченных режимах по сравнению с допустимыми.

Исходя из схемы электрической принципиальной, определяем, что постоянные резисторы должны обеспечивать номинальную мощность 0,0125 Вт. При этом используются резисторы сопротивлением 10 Ом.

Учитывая все эти характеристики (требования по габаритам и массе, требования в области кинематических и механических воздействий), можно сделать вывод, что перечисленным требованиям удовлетворяют постоянные непроволочные резисторы общего назначения типа МЛТ.

Резисторы этого типа имеют характеристики, приведенные в таблице 4.2.1.

Таблица 4.2.1 - Эксплуатационные характеристики резисторов типа МЛТ

Характеристика Значение
Диапазон номинальных сопротивлений при мощности 0,125 Вт 10 ...100000
Уровень собственных шумов , мкВ/В 1,5

Температура окружающей среды , оС

от -60 до +70

Относительная влажность воздуха при температуре +35 оС, %

до 98
Пониженное атмосферное давление, Па до 133
Предельное рабочее напряжение постоянного и переменного тока. В 200
Минимальная наработка, ч 25000
Срок сохраняемости, лет 25

Эксплуатационная надежность конденсаторов, так же как и резисторов, во многом определяется правильным выбором их типа и возможного использования их в режимах, не превышающих допустимые.

Для правильного выбора типа конденсаторов необходимо, с учетом требований к устройству, принимать во внимание следующие факторы:

-     значение номинальных параметров и их допустимые изменения в процессе эксплуатации (номинальная емкость, допуск и др.);

-     эксплуатационные факторы;

-     показатели надежности и долговечности;

-     конструкцию конденсаторов, способы их монтажа, габариты и массу.

С учетом всех выше изложенных требований произведем выбор конденсаторов постоянной емкости.

В качестве таких конденсаторов выбираем конденсаторы типа КМ-6А.

Эксплуатационные характеристики конденсаторов этого типа приведены в таблице 4.2.2.

Таблица 4.2.2 -Эксплуатационные характеристики конденсаторов КМ-6а

Характеристика Значение
1 2

Температура окружающей среды, оС

 От -60 до +85
Относительная влажность воздуха , %  До 98
Атмосферное давление, мм.тр.ст

 10-6 до 3атм.

Вибрационные нагрузки с ускорением в диапазоне 5 - 200 Гц  10g
Многократные удары с ускорением до 35g
Линейные нагрузки с ускорением , не более  100g
Тангенс угла потерь, не более 0,0012
Минимальная наработка, ч 15000
Срок сохранения, лет 12

Схема электрическая принципиальная содержит также и полярные конденсаторы. С учетом всех требований предъявляемых к ним выберем электролитические конденсаторы типа К50-29 .

Эксплуатационные характеристики конденсаторов этого типа приведены в таблице 4.2.3.

Таблица 4.2.3 - Эксплуатационные характеристики конденсаторов типа К50-29

Характеристика Значение

Температура окружающей среды, оС

от -20 до +70
Относительная влажность воздуха, % до 98
Атмосферное давление, кПа от 1,3 до 2942
Вибрационные нагрузки с ускорением в диапазоне 1 - 600 Гц до 10 g
Многократные удары с ускорением до 15 g
Линейные нагрузки с ускорением до 100 g
Допустимые отклонения емкости, % от -20 до +80
Минимальная наработка, ч 5000
Срок сохранения, лет 5

В данном устройстве используются и интегральные микросхемы. При выборе типов микросхем будем учитывать совместимость их с динамическими параметрами MC69HC11E9 и в соответствии с функциональным назначением микросхем. С учетом этого можно выбрать следующие интегральные микросхемы: КР140УД12,МС145000,МС145407,МС34064,МС7805.

Приведем краткую характеристику Микроконроллера МС68НС711Е9.

Данное семейство микроконтроллеров является одним из наиболее распространенных в мире.Условные обозначения, которыми маркируются микроконтроллеры семейства, имеют вид:

Микроконтроллер содержит внутреннюю память программ (ППЗУ) емкостью 12 Кбайт, ОЗУ емкостью 512 байт. Модель имеют внутреннее ЭСППЗУ емкостью 512 байт.Микроконтроллер работает при напряжении питания Vn = 5 В, имеет максимальную тактовую частоту до Ft = 4 МГц. Потребляемая мощность составляет 150...300 мВт в диапазоне тактовых частот Ft = 2...4 МГц. В режиме ожидания мощность снижается в 2 раза, а в режиме останова не превышает 250 мкВт.

Рассмотрим особенности функционирования периферийных модулей, используемых в микроконтроллерах этого семейства.

Модель содержит 16-разрядный таймер, который имеет три входа фиксации 1C, четыре выхода совпадения ОС. Эти таймеры служат также для генерации периодических прерываний и контроля выполнения программы с помощью сторожевого устройства (watchdog). Кроме таймера микроконтроллер имеет также 8-разрядные счетчики импульсов.

Микроконтроллер содержит асинхронный и синхронный последовательные порты SCI, SPI, 8-разрядный АЦП, ,число аналоговых входов 8.

Внешний вид корпуса показан на рисунке 4.1


Рис.4.1 Корпус микроконтроллера МС68НС711Е9

Номинальные значения в мм

A 1.10

A1 0.64

A2 0.10

E1 12.00

E 10.00

D1 12.00

D 10.00

n1 16.00

n 64

c  0.15

B 0.22

L 0.30

R1 0.08

R2 0.14

alpha  10

beta 12

phi  3

L1 0.20

p 0.50

X 0.89

Микросхема МС145407 размещается в корпусе 751D-04.Вид корпуса показан на рисунке 4.2

Рис.4.2 Микросхема МС145407


Информация о работе «Разработка конструкции и технологии изготовления модуля управления временными параметрами»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 138399
Количество таблиц: 23
Количество изображений: 10

Похожие работы

Скачать
124866
3
8

... —к «массе». Качество отработки элементов вождения по трудным грунтам зависит от наличия и состояния цепей противоскольжения, трековых дорожек, матов и средств самовытаскивания 4. РАЗРАБОТКА КОНСТРУКЦИИ ДУБЛИРУЮЩЕГО УСТРОЙСТВА УПРАВЛЕНИЯ 4.1. ОПРЕДЕЛЕНИЕ РАСЧЕТНОЙ НАГРУЗКИ НА ВАЛ, ВОЗВРАТНЫЕ ПРУЖИНЫ И ПЕДАЛИ. Номинальное усилие на дополнительные педали тормоза и сцепления будет находиться в ...

Скачать
168194
12
35

... автоматизированного управления технологическими процессами (АСУТП). Составление технического задания   Рис.9. Схема технологии производства упаковки из картона Разработка упаковки   Верстка графического дизайна   Изготовление макета     Раскладка на лист   ...

Скачать
65704
6
2

... ; ·  транзисторы; ·  разьемы; 4)  пайка 5)  очистка ПП; 6)  маркировка; 7)  контроль; 8)  настройка. Разработанная технология сборки приведена в приложении. Заключение В результате работы над курсовым проектом была разработана конструкция прибора измерителя емкости, которая полностью отвечает современным эргономическим, массогабаритным и функциональным требованиям, а также другим ...

Скачать
369637
0
0

... мероприятия по обеспечению однородности выпускаемой продукции. Все эти мероприятия можно объединить в четыре группы: 1. совершенствование технологии производства; 2. автоматизация производства; 3. технологические (тренировочные) прогоны; 4. статистическое регулирование качества продукции. 2.10. Проектирование технологических процессов с использованием средств ...

0 комментариев


Наверх