2. Введення обох частин рівняння у квадрат
Нехай дані два рівняння (1) і . Якщо - корінь першого рівняння, то вірно рівність . З рівності двох чисел випливає рівність їхніх квадратів, тобто , а це означає, що - корінь рівняння (2). Значить із рівняння (1) потрібне рівняння (2).
У той же час із рівності квадратів чисел не потрібне рівність цих чисел. Тому з рівняння (2) не потрібне рівняння (1). Звідси випливає, що якщо при рішенні рівняння використовувалося введення обох частин рівняння у квадрат, те потрібно повести додаткове дослідження, що дозволяє виключити «сторонні» корені, якщо вони з'явилися.
Приклад 1. Вирішити рівняння .
Рішення. Зведемо обидві частини цього рівняння у квадрат.
; .Тоді , .
Перевірка.
Якщо , те, рівність не вірно, отже, -1- не є коренем вихідного рівняння.
Якщо , то 4=4, рівність вірно.
Отже, рівняння має єдиний корінь: 4.
Відповідь: {4}.
3. Виконання в одній частині (або в обох частинах) рівняння тотожних перетворень, що приводять до розширення області визначення рівняння.
Якщо деяке тотожне перетворення привело до розширення області визначення рівняння, то одержуємо рівняння - наслідок. При цьому можуть існувати такі значення змінної, які є коріннями вихідного рівняння.
Приклад 1. Вирішити рівняння .
Рішення. Виконавши приведення подібних доданків, одержимо: . Тоді , .
Перевірка.
Якщо , то вираження не має змісту.
Якщо , те, рівність вірно.
Отже, рівняння має єдиний корінь:5.
Відповідь: {5}.
Приклад 2. Вирішити рівняння .
Рішення. або . Тоді , .
Перевірка.
Якщо , то вираження не має змісту.
Якщо , те, рівність вірно.
Отже, рівняння має єдиний корінь:-2.
Якщо при рішенні рівняння ми замінили його рівнянням - наслідком, то зазначена вище перевірка є невід'ємною частиною рішення рівняння. Тому важливо знати, при яких перетвореннях дане рівняння переходить у наслідок.
Розглянемо рівняння (3) і помножимо обидві частини його на одне й теж вираження , що має зміст при всіх значеннях . Одержимо рівняння: (4), коріннями якого служать як коріння рівняння (3), так і корінь рівняння .
Виходить, рівняння (4) є наслідок рівняння (3). Ясно, що рівняння (3) і (4) рівносильні, якщо «стороннє» рівняння не має корінь. Таким чином, справедлива наступна теорема.
Теорема 1. Якщо обидві частини рівняння помножити на , то вийде рівняння, що є наслідком вихідного. Якщо рівняння не має корінь, то отримане рівняння рівносильне вихідному (якщо область припустимих значень не вже області припустимих значень змінної даного рівняння).
Приклад 1. .
Помітимо, що подібне перетворення, тобто перехід від рівняння (4) до рівняння (3) діленням обох частин рівняння (4) на вираження , як правило, неприпустимо, оскільки можна привести до втрати корінь, у цьому випадку можуть «втратитися» коріння рівняння .
Приклад 2. Рівняння має два корені: 3 і 4.
Ділення обох частин рівняння на приводить до рівняння , що має тільки один корінь 4, тобто відбулася втрата кореня.
Знову візьмемо рівняння (3) і зведемо обидві його частини у квадрат. Одержимо рівняння: (5), коріннями якого служать як коріння рівняння (3), так і корінь «стороннього» рівняння . Ясно, що рівняння (3) і (5) рівносильні, якщо в «стороннього» рівняння немає кореню.
Приклад 3. Рівняння має корінь 4. Якщо обидві частини цього рівняння піднести до квадрата, то вийде рівняння , що мають два корені: -2 і 4. Виходить, рівняння - наслідок рівняння . При переході від рівняння до рівняння з'явився «сторонній» корінь: -2.
Теорема 2. При піднесенні обох частин рівняння у квадрат (і взагалі в будь-який парний ступінь) виходить рівняння, що є наслідком вихідного.
Приклад 1. .
При рішенні ірраціонального рівняння найчастіше намагаються замінити його більше простим, але рівносильним вихідному. Тому важливо знати рівносильні перетворення.
Визначення 10. Рівняння, що має ті самі корінь, називають рівносильними рівняннями. Рівняння, що не мають корінь, також уважають рівносильними. Іншими словами два рівняння називають рівносильними, якщо множини їхніх рішень збігаються. Рівносиль позначається в такий спосіб: .
Приклад 1. Рівняння й рівносильні, тому що кожне з них має єдиний корінь – число 3. .
Приклад 2. Рівняння й не рівносильні, тому що перше має тільки один корінь: 6, а друге має два корені: 6 і -6.
Приклад 3. Рівняння й рівносильні, тому що множини їхніх рішень порожні. .
Визначення 11. Нехай дані рівняння й і деяка множина М. Якщо будь-який корінь першого рівняння, що належить множині М, задовольняють другому рівнянню, а будь-який корінь другого рівняння, що належить множині М, задовольняє першому рівнянню, те ці рівняння називаються рівносильними на множині М.
Приклад 1. і не є рівносильними на множині всіх дійсних чисел, тому що перше рівняння має єдиний корінь 1, а друге має два корені: -1 і 1. Але ці рівняння рівносильні на множині всіх ненегативних чисел, тому що кожне з них має на цій множині єдиний корінь: 1.
Відзначимо, що часто множину М збігається або з ОПЗ рівняння , або множиною всіх дійсних чисел.
Є ряд теорем про рівносиль рівнянь.
Теорема 3. При піднесенні обох частин рівняння в ту саму непарний ступінь виходить рівняння, рівносильне вихідному.
Приклад 1. .
Теорема 4. Якщо в рівнянні який-небудь доданок перенести з однієї частини в іншу, змінивши його знак, то вийде рівняння, рівносильне вихідному.
Приклад 1. .
Теорема 5. Якщо обидві частини рівняння помножити або розділити на одне й теж відмінне від нуля число, то вийде рівняння, рівносильне вихідному.
Приклад 1. (обидві частини першого рівняння розділили на 2).
Теорема 6. Якщо в який або частини рівняння виконати тотожні перетворення, що не міняють області визначення рівняння, то вийде рівняння, рівносильне вихідному.
У шкільній практиці при рішенні ірраціональних рівнянь найчастіше використовуються два основних методи:
1) обох частин рівняння в ту саму ступінь;
2) введення нових (допоміжних) змінних.
Ці методи будемо вважати стандартними. В обов'язковому шкільному курсі звичайно цими методами й обмежуються. Однак іноді доводиться застосовувати нестандартні методи й штучні прийоми рішення ірраціональних рівнянь.
Типова помилка при рішенні ірраціональних рівнянь полягає в тому, що школярі без додаткових пояснень використовують перетворення, що порушують рівносиль, що приводить до втрати кореня і появі «сторонніх» коренів.
При піднесенні обох частин ірраціонального рівняння в ту саму ступінь потрібне мати на увазі, що якщо ступінь - не парне число, то одержимо рівносильне рівняння, якщо ж ступінь - парне число, то одержимо рівняння - наслідок. Тому при рішенні ірраціональних рівнянь у більшості випадків необхідна перевірка знайдених рішень.
Перевірки можна уникнути, якщо вирішувати ірраціональні рівняння за допомогою рівносильних замін. Для цього корисно знать наступні теореми.
Теорема 7. Рівняння виду рівносильне змішаній системі
Рівняння виду
Теорема 8. Рівняння виду або .
Рівняння виду .
Далі розглянемо більш докладно типи ірраціональних рівнянь і методи їхнього рішення.
... анализ управленческих функций: Пер. с англ. – М.: прогресс, 1981. 6. Мескон А., Альберт М., Хедоури Ф. Основы менеджмента: Пер с англ. – М.: Дело. 1992. 7. Планкетт Л., Хейл Г. Выработка и принятие управленческих решений: опережающее управление: Пер. с англ. – М: Экономика, 1984. 8. Труханов Р.И. Модели принятия решений в условиях неопределенности. – М.: Наука, 1991. 9. Фалм
і дані завдань варіанту №7 1. Завдання №1 1.1 Задача 1.1 (вар. №7) Спростити вираз Розв’язання. Алгебраїчні перетворення в Maple проводяться за допомогою вбудованих функцій елементарних перетворень таких як simplify - спростити, expand - розкрити дужки, factor -розкласти на множники, normal - привести до спільного знаменника, combine-перетворення ступеня, collect- ...
... з відсутністю творчого підходу до розв’язування задач, невмінням логічно мислити, синтезувати при розв’язанні проблемних задач різноманітні розділи математики – алгебру, геометрію і тригонометрію. Використання ЕОМ для опрацювання результатів контролю знань потребує одержання числової відповіді в задачі. Це скорочує можливі помилки операторів при введенні цих результатів у пам’ять ЕОМ. Тому у ...
... раціоналізм античної науки не може бути адекватно і цілісно зрозумілим і відображеним без системного аналізу основ і теоретичної еволюції античної математики. · У процесі відродження античної думки (у ренесансній філософії), її критичної переробки, у методології раціоналізму Нового часу відбулася втрата частини семантичного змісту і змісту теоретичного раціоналізму античної філософії і ...
0 комментариев