3.2 Застосування похідної
У вищенаведених рівняннях були розглянуті застосування деяких властивостей функції, що входять у рівняння. Наприклад, властивості монотонності, обмеженості, існування найбільшого й найменшого значень і т.д. Іноді питання про монотонність, про обмеженість і, особливо, про знаходження найбільшого й найменшого значень функції елементарними методами вимагає трудомістких і тонких досліджень, однак він істотно спрощується при застосуванні похідної. (Наприклад, не завжди можна догадатися, як і яка нерівність застосувати з «класичних»).
Розглянемо застосування похідної при рішенні рівнянь.
3.2.1 Використання монотонності функції
Надалі ми будемо користуватися наступними твердженнями:
1) якщо функція f(x) має позитивну похідну на проміжку М, те ця функція зростає на цьому проміжку;
2) якщо функція безперервна на проміжку й має усередині проміжку позитивну (негативну) похідну, те ця функції зростає ( убуває) на проміжку;
3) якщо функція має на інтервалі (а;b) тотожно рівну нулю похідну, те ця функція є постійна на цьому інтервалі.
Приклад 1. Вирішити рівняння
Рішення. Розглянемо функцію
.
На цьому проміжку безперервна, усередині його має похідну:
Ця похідна позитивна усередині проміжку . Тому функція зростає на проміжку М. Отже, вона приймає кожне своє значення в одній крапці. А це означає, що дане рівняння має не більше одного кореня. Легко бачити, що -1 є коренем даного рівняння й по сказаному вище інших корінь не має.
Відповідь:
3.2.2 Використання найбільшого й найменшого значень функції
Справедливі наступні твердження:
найбільше (найменше) значення безперервної функції, прийняте на інтервалі може досягатися в тих крапках інтервалу , у яких її похідна дорівнює нулю або не існує (кожна така крапка називається критичною крапкою);
щоб знайти найбільше й найменше значення безперервної на відрізку функції, що має на інтервалі (а;b) кінцеве число критичних крапок, досить обчислити значення функції у всіх критичних крапках, що належать інтервалу (а;b), а також у кінцях відрізка й з отриманих чисел вибрати найбільше й найменше; якщо в критичній крапці функція безперервна, а її похідна, проходячи через цю крапку, міняє знак з «мінуса» на «плюс», то крапка - крапка мінімуму, а якщо її похідна міняє знак з «плюса» на «мінус», те - крапка максимуму.
Приклад 1. Вирішити рівняння .
Рішення. Знайдемо ОПЗ змінної x.
ОПЗ: .
Розглянемо безперервну функцію на відрізку [2;4], де D(f)=[2;4].
Функція f(x) на інтервалі (2;4) має похідну: , звертаються в нуль тільки при х=3.
Так як функція f(x)безперервна на відрізку [2;4], те її найбільше й найменше значення перебувають серед чисел f(3);f(2);f(4). Так як f(3)=2;f(2)=f(4)= , , те найбільше значення f(x) є f(3)=2.
Отже, дане рівняння має єдиний корінь: 3.
Відповідь:{3}.
... анализ управленческих функций: Пер. с англ. – М.: прогресс, 1981. 6. Мескон А., Альберт М., Хедоури Ф. Основы менеджмента: Пер с англ. – М.: Дело. 1992. 7. Планкетт Л., Хейл Г. Выработка и принятие управленческих решений: опережающее управление: Пер. с англ. – М: Экономика, 1984. 8. Труханов Р.И. Модели принятия решений в условиях неопределенности. – М.: Наука, 1991. 9. Фалм
і дані завдань варіанту №7 1. Завдання №1 1.1 Задача 1.1 (вар. №7) Спростити вираз Розв’язання. Алгебраїчні перетворення в Maple проводяться за допомогою вбудованих функцій елементарних перетворень таких як simplify - спростити, expand - розкрити дужки, factor -розкласти на множники, normal - привести до спільного знаменника, combine-перетворення ступеня, collect- ...
... з відсутністю творчого підходу до розв’язування задач, невмінням логічно мислити, синтезувати при розв’язанні проблемних задач різноманітні розділи математики – алгебру, геометрію і тригонометрію. Використання ЕОМ для опрацювання результатів контролю знань потребує одержання числової відповіді в задачі. Це скорочує можливі помилки операторів при введенні цих результатів у пам’ять ЕОМ. Тому у ...
... раціоналізм античної науки не може бути адекватно і цілісно зрозумілим і відображеним без системного аналізу основ і теоретичної еволюції античної математики. · У процесі відродження античної думки (у ренесансній філософії), її критичної переробки, у методології раціоналізму Нового часу відбулася втрата частини семантичного змісту і змісту теоретичного раціоналізму античної філософії і ...
0 комментариев