3.2 Застосування похідної

У вищенаведених рівняннях були розглянуті застосування деяких властивостей функції, що входять у рівняння. Наприклад, властивості монотонності, обмеженості, існування найбільшого й найменшого значень і т.д. Іноді питання про монотонність, про обмеженість і, особливо, про знаходження найбільшого й найменшого значень функції елементарними методами вимагає трудомістких і тонких досліджень, однак він істотно спрощується при застосуванні похідної. (Наприклад, не завжди можна догадатися, як і яка нерівність застосувати з «класичних»).

Розглянемо застосування похідної при рішенні рівнянь.

3.2.1 Використання монотонності функції

Надалі ми будемо користуватися наступними твердженнями:

1) якщо функція f(x) має позитивну похідну на проміжку М,  те ця функція зростає на цьому проміжку;

2) якщо функція  безперервна на проміжку   й має усередині проміжку позитивну (негативну) похідну, те ця функції зростає ( убуває) на проміжку;

3) якщо функція  має на інтервалі (а;b) тотожно рівну нулю похідну, те ця функція  є постійна на цьому інтервалі.

Приклад 1. Вирішити рівняння

Рішення. Розглянемо функцію

.


На цьому проміжку  безперервна, усередині його має похідну:

Ця похідна позитивна усередині проміжку . Тому функція  зростає на проміжку М. Отже, вона приймає кожне своє значення в одній крапці. А це означає, що дане рівняння має не більше одного кореня. Легко бачити, що -1 є коренем даного рівняння й по сказаному вище інших корінь не має.

Відповідь:

3.2.2 Використання найбільшого й найменшого значень функції

Справедливі наступні твердження:

найбільше (найменше) значення безперервної функції, прийняте на інтервалі  може досягатися в тих крапках інтервалу , у яких її похідна дорівнює нулю або не існує (кожна така крапка називається критичною крапкою);

щоб знайти найбільше й найменше значення безперервної на відрізку функції, що має на інтервалі (а;b) кінцеве число критичних крапок, досить обчислити значення функції у всіх критичних крапках, що належать інтервалу (а;b), а також у кінцях відрізка й з отриманих чисел вибрати найбільше й найменше; якщо в критичній крапці  функція безперервна, а її похідна, проходячи через цю крапку, міняє знак з «мінуса» на «плюс», то крапка - крапка мінімуму, а якщо її похідна міняє знак з «плюса» на «мінус», те - крапка максимуму.

Приклад 1. Вирішити рівняння .

Рішення. Знайдемо ОПЗ змінної x.

ОПЗ: .

Розглянемо безперервну функцію  на відрізку [2;4], де D(f)=[2;4].

Функція f(x) на інтервалі (2;4) має похідну: , звертаються в нуль тільки при х=3.

Так як функція f(x)безперервна на відрізку [2;4], те її найбільше й найменше значення перебувають серед чисел f(3);f(2);f(4). Так як f(3)=2;f(2)=f(4)= , , те найбільше значення f(x) є f(3)=2.

Отже, дане рівняння має єдиний корінь: 3.

Відповідь:{3}.



Информация о работе «Рішення ірраціональних рівнянь»
Раздел: Математика
Количество знаков с пробелами: 33467
Количество таблиц: 0
Количество изображений: 4

Похожие работы

Скачать
48061
13
7

... анализ управленческих функций: Пер. с англ. – М.: прогресс, 1981. 6.    Мескон А., Альберт М., Хедоури Ф. Основы менеджмента: Пер с англ. – М.: Дело. 1992. 7.    Планкетт Л., Хейл Г. Выработка и принятие управленческих решений: опережающее управление: Пер. с англ. – М: Экономика, 1984. 8.    Труханов Р.И. Модели принятия решений в условиях неопределенности. – М.: Наука, 1991. 9.    Фалм

Скачать
10984
0
8

і дані завдань варіанту №7     1. Завдання №1   1.1 Задача 1.1 (вар. №7) Спростити вираз Розв’язання. Алгебраїчні перетворення в Maple проводяться за допомогою вбудованих функцій елементарних перетворень таких як simplify - спростити, expand - розкрити дужки, factor -розкласти на множники, normal - привести до спільного знаменника, combine-перетворення ступеня, collect- ...

Скачать
9088
0
0

... з відсутністю творчого підходу до розв’язування задач, невмінням логічно мислити, синтезувати при розв’язанні проблемних задач різноманітні розділи математики – алгебру, геометрію і тригонометрію. Використання ЕОМ для опрацювання результатів контролю знань потребує одержання числової відповіді в задачі. Це скорочує можливі помилки операторів при введенні цих результатів у пам’ять ЕОМ. Тому у ...

Скачать
32761
0
0

... раціоналізм античної науки не може бути адекватно і цілісно зрозумілим і відображеним без системного аналізу основ і теоретичної еволюції античної математики. ·  У процесі відродження античної думки (у ренесансній філософії), її критичної переробки, у методології раціоналізму Нового часу відбулася втрата частини семантичного змісту і змісту теоретичного раціоналізму античної філософії і ...

0 комментариев


Наверх