3.1 Застосування основних властивостей функції

3.1.1 Використання області визначення рівняння

Іноді знання області визначення рівняння дозволяє довести, що рівняння не має рішень, а іноді дозволяє знайти рішення рівняння безпосередньою підстановкою чисел з її.

Приклад 1. Вирішити рівняння .

Рішення. Знайдемо область визначення рівняння.

ОПЗ: .

Отже, дана система рішень не має.

Так як система рішень не має, то й дане рівняння не має корінь.

Відповідь: .

Приклад 2. Вирішити рівняння

Рішення. Знайдемо ОПЗ змінної х.

ОПЗ: .


Отже,  або .

Таким чином, рішення даного рівняння можуть перебувати серед знайдених двох чисел.

Перевіркою переконуємося, що тільки 2 є коренем вихідного рівняння.

Відповідь: {2}.

3.1.2 Використання області значень рівнянь

Приклад 1. Вирішити рівняння

Рішення.. , отже, , але  (права частина рівняння негативна, а ліва позитивна), значить дане рівняння не має рішень.

Відповідь:

Приклад 2. Вирішити рівняння .

Рішення. , те

; ; ; ; ; ; .

Отже, ліва частина рівняння приймає ненегативне значення тільки при . А це значить, що його коренем може бути тільки значення 5, а може трапитися, що рівняння взагалі не буде мати корінь. Для рішення цього питання виконаємо перевірку.

Перевірка показує, що 5 є коренем вихідного рівняння.

Відповідь: {5}.

3.1.3 Використання монотонності функції

Рішення рівнянь і нерівностей з використанням властивостей монотонності ґрунтується на наступних твердженнях.

1. Нехай f(x) - безперервна й строго монотонна функція на проміжку Q, тоді рівняння f(x)=c, де c - дана константа може мати не більше одного рішення на проміжку Q.

2. Нехай f(x) і g(x) - безперервні на проміжку Q функції, f(x) - строго зростає, а g(x)- строго убуває на цьому проміжку, тоді рівняння f(x)= g(x) може мати не більше одного рішення на проміжку Q.

Відзначимо, що в кожному з випадків проміжки Q можуть мати один з видів:

Приклад 1. Вирішимо рівняння

Рішення. Знайдемо ОПЗ змінної х.

ОПЗ: .

Отже, .

На ОПЗ функції  й  безперервні й строго убувають, отже, безперервна й убуває функція . Тому кожне своє значення функція h(x) приймає тільки в одній крапці. Так як h(2)=2 , те 2 є єдиним коренем вихідного рівняння.

Відповідь: {2}.

3.1.4 Використання обмеженості функції

Якщо при рішенні рівняння  вдається показати, що для всіх  з деякої множини М справедливі нерівності  й , то на множині М рівняння  рівносильне системі рівнянь: .

Приклад 1. Вирішити рівняння .

Рішення. Функції, що коштують у різних частинах рівняння, визначені на . Для кожного  . Отже, дане рівняння рівносильне системі рівнянь

.

Вирішимо друге рівняння системи:

;  ;  

Тоді  

Перевірка показує, що 0 є коренем даного рівняння, а - 1-не є.

Відповідь:{0}.

Приклад 2. Вирішити рівняння

Рішення. Оцінимо підкореневі вираження.

Отже, ,

Так як перший доданок лівої частини вихідного рівняння обмежено знизу одиницею, а другий доданок-3, те їхня сума обмежена знизу 4. Тоді ліва частина рівняння стає рівної правої частини рівняння при .

Відповідь:{2}.



Информация о работе «Рішення ірраціональних рівнянь»
Раздел: Математика
Количество знаков с пробелами: 33467
Количество таблиц: 0
Количество изображений: 4

Похожие работы

Скачать
48061
13
7

... анализ управленческих функций: Пер. с англ. – М.: прогресс, 1981. 6.    Мескон А., Альберт М., Хедоури Ф. Основы менеджмента: Пер с англ. – М.: Дело. 1992. 7.    Планкетт Л., Хейл Г. Выработка и принятие управленческих решений: опережающее управление: Пер. с англ. – М: Экономика, 1984. 8.    Труханов Р.И. Модели принятия решений в условиях неопределенности. – М.: Наука, 1991. 9.    Фалм

Скачать
10984
0
8

і дані завдань варіанту №7     1. Завдання №1   1.1 Задача 1.1 (вар. №7) Спростити вираз Розв’язання. Алгебраїчні перетворення в Maple проводяться за допомогою вбудованих функцій елементарних перетворень таких як simplify - спростити, expand - розкрити дужки, factor -розкласти на множники, normal - привести до спільного знаменника, combine-перетворення ступеня, collect- ...

Скачать
9088
0
0

... з відсутністю творчого підходу до розв’язування задач, невмінням логічно мислити, синтезувати при розв’язанні проблемних задач різноманітні розділи математики – алгебру, геометрію і тригонометрію. Використання ЕОМ для опрацювання результатів контролю знань потребує одержання числової відповіді в задачі. Це скорочує можливі помилки операторів при введенні цих результатів у пам’ять ЕОМ. Тому у ...

Скачать
32761
0
0

... раціоналізм античної науки не може бути адекватно і цілісно зрозумілим і відображеним без системного аналізу основ і теоретичної еволюції античної математики. ·  У процесі відродження античної думки (у ренесансній філософії), її критичної переробки, у методології раціоналізму Нового часу відбулася втрата частини семантичного змісту і змісту теоретичного раціоналізму античної філософії і ...

0 комментариев


Наверх