1.2 Производство электроэнергии с помощью ветроэнергетических установок
Использование ветроустановок для производства электроэнергии является наиболее эффективным способом утилизации энергии ветра. Эффективность преобразования механической энергии в электрическую в электрогенераторе составляет обычно 95%, а потери электрической энергии при передаче не превышают 10%.
Из (1.2) видно, что энергия или мощность потока пропорциональна кубу скорости. Однако в механическую работу можно превратить только часть энергии потока, протекающего через ветротурбину. Другая часть энергии теряется на трение воздушных частиц и различные потери, так как ветротурбина оказывает сопротивление движению воздушных частиц. Кроме того, значительная часть энергии содержится в воздушном потоке, уже прошедшем через ветротурбину. Это объясняется тем, что поток за ветротурбиной также имеет некоторую скорость (рис.1.2).
Рисунок 1.2 – Действие силы ветра на ветротурбину
На рис. 1.2 A1 – площадь, ометаемая ветротурбиной, А0 и А2 – площади поперечных сечений проходящего через ветротурбину ветрового потока соответственно до и за ним. Причем сечение А0 расположено за пределами возмущенной ветротурбиной области, а сечение А2 – в месте наименьшей скорости потока. Положение площади сечений А0 и А2 можно определить по результатам экспериментальных измерений поля скоростей в окрестности ветротурбины. Непосредственно в сечении А1 провести такие измерения невозможно из-за вращения ветротурбины.
Скорость потока за ветротурбиной не может быть равна нулю и наилучший режим работы ветродвигателя имеет место, когда скорость непосредственно за ветротурбиной составляет 2/3 от первоначальной скорости потока, набегающего на ветротурбину.
Число, показывающее, какая часть мощности воздушного потока полезно используется ветротурбиной, называется коэффициентом мощности или коэффициентом использования энергии ветра СР.
Тогда мощность воздушного потока за ветротурбиной будет равна:
(1.5)
В лучших промышленных аэрогенераторах коэффициент мощности достигает 0,4. Коэффициент мощности СР характеризует эффективность использования ветрогенератором энергии воздушного потока, проходящего через ометаемую ветротурбиной площадь А1.
Предъявляемые при этом требования к частоте и напряжению вырабатываемой электроэнергии зависят от особенностей потребителей этой энергии. Эти требования жесткие при работе ветроустановок в рамках единой энергосистемы и достаточно мягкие при использовании энергии ВЭУ в осветительных и нагревательных установках. К настоящему времени разработано много проектов ветроэлектрических установок, включая и генераторы к ним, но в будущем с превращением ветроэнергетики в самостоятельную отрасль энергетики, несомненно, появятся принципиально новые конструкции ВЭУ.
При проектировании ветроэлектрических установок надо учитывать следующие их особенности:
1) для обеспечения максимальной эффективности работы ветроколеса следует изменять частоту его вращения при изменении скорости ветра, сохраняя постоянным коэффициент быстроходности, в то же время для максимально эффективной работы электрогенератора необходима практически постоянная частота вращения;
2) механические системы управления частотой вращения ветротурбины достаточно сложны и дороги. Гораздо эффективнее и дешевле управлять частотой его вращения, изменяя электрическую нагрузку электрогенератора;
3) оптимальная частота вращения ветротурбины тем меньше, чем больше его радиус, поэтому только очень малые ветроколеса (радиусом не более 2 м) удается соединять с генератором напрямую. При больших размерах ветротурбины приходится использовать повышающие редукторы, удорожающие ветроустановку и ее обслуживание. Альтернативой редукторам могут стать новые типы многополюсных генераторов, работающих при меньших частотах вращения;
4) в конструкции ветроэлектрической установки предусматривается, как правило, возможность отключения генератора от ветротурбины и вращения его от химического или механического аккумулятора энергии, поэтому систему управления генератором не связывают с работой ветротурбины. При отсутствии такой связи даже при “мягком” соединении генератора с ветротурбиной необходимы специальные демпфирующие устройства, дли того чтобы исключить механические удары, перегрузки и броски напряжений на выходе генератора.
Кроме того, следует учитывать специфические требования, предъявляемые к выходным параметрам ВЭУ. а именно:
а) наиболее благоприятные ветровые условия существуют, как правило, в малонаселенных районах, на островах и в море. Требования к электроэнергии в таких районах весьма специфичны, но почти наверняка ее здесь требуется гораздо меньше, чем в развитых промышленных районах;
б) анализ парка потребителей электроэнергии показывает, что лишь 5 – 10% из них предъявляют определенные требования к ее параметрам (например, к частоте). Это в основном электродвигатели, электронные устройства и осветительные установки. Поэтому целесообразно так строить систему электроснабжения, чтобы она могла обеспечивать потребителей как дешевой электроэнергией с нестабилизированными параметрами (например, для отопления), так и относительно дорогой, но со стабильными параметрами;
в) энергосистемы в сельской местности обычно маломощные и относительно низковольтные (менее 33 кВ), при передаче энергии на большие расстояния возникает много проблем, связанных с ее потерями, поэтому подключение ВЭУ к таким системам нецелесообразно;
г) так как периоды безветрия неизбежны, то для исключения
перебоев в электроснабжении ВЭУ должны иметь аккумуляторы
энергии или быть запараллеленными электроэнергетическими установками других типов.
Совершенно очевидно, что развитие ветроэнергетики будет стимулировать прогресс во всей электроэнергетике.
... – нагнетательный насос 2. Выбор и обоснование конструкции энергоагрегата. Для энергоснабжения материального склада мы выбираем ветроэнергетическую установку, т.к. использование солнечных коллекторов в зимнее время неэффективно. По заданию нам дана ветроэнергетическая установка с вертикальным валом. Такая установка дает нам возможность разместить редуктор и ...
... формулой: , (2.3.14.) где: Eа- емкость аккумулятора, А ч; Uа- напряжение аккумулятора, В. Принимаем Еа = 10(6СТ-210) = 2100 Ач. Таким образом, параметры энергосистемы на основе ВИЭ следующие: Основной источник В-установка, Рв= 3 кВт; Дополнительный источник С-установка, Рс= 0,72 кВт; Резерв, аккумуляторы 6СТ-75 Еа= 10*210 =2100 Ач. 3. ...
... северных регионов за счет возведения двойной оболочки здания с использованием солнечной энергии можно обеспечить до 40% экономии тепла. Учитывая развитие технологий возобновляемой энергетики, с должной долей уверенности можно сказать о реальной возможности создания эффективной системы энергоснабжения удаленных от центральной энергосети сельских домов при условии комбинированного использования ...
... соответствующие требованиям технической. 5 Энерго- и материалосбережение Для эффективного материалосбережения при разработке энергосберегающей системы освещения были применены следующие методы: 1. Уменьшение размеров печатной платы за счет увеличения плотности компоновки и рационального использование пространства платы, что экономит текстолит, затрачиваемый на изготовление платы. ...
0 комментариев