Электробезопасность экспериментальной установки

Разработка ветроэнергетической установки
Производство электроэнергии с помощью ветроэнергетических установок Классификация ВЭУ Классификация по типу применяемой электромашины СИЛОВОЙ ПОЛУПРОВОДНИКОВЫЙ ПРЕОБРАЗОВАТЕЛЬ В СИСТЕМЕ ЭЛЕКТРОПРИВОДА ИМИТАТОРА Основы механики электропривода Диапазон регулирования – отношение максимальной возможной скорости к минимальной Регулируемая величина на выходе электропривода (скорость, угол, момент и т. д.) должна по возможности точней повторять задающий (входной) сигнал Электромеханическая система имитатора ВТ на базе электропривода постоянного тока Расчет параметров элементов схемы управляемого выпрямителя (этап параметрического синтеза) Ограничение коммутационных перенапряжений Конструктивный расчет сглаживающего реактора Электробезопасность экспериментальной установки Расчет автоматического защитного отключения Построение оптимизированной модели СПП с выбором оптимальной индуктивности реактора Проверка степени защиты оболочки корпуса экспериментальной установки проводится по методике ГОСТ 14254
103372
знака
3
таблицы
44
изображения

3.3 Электробезопасность экспериментальной установки

Основные требования к безопасности электрооборудования изложены в ГОСТ 12.2.007.0-75 системы стандартов безопасности труда.

Стандарт устанавливает общие требования безопасности конструкции изделий, т. е. требования безопасности, предотвращающие или уменьшающие до допустимого уровня воздействия на человека: электрического тока, электрической искры и дуги, движущихся частей изделия, частей, нагревающихся до высоких температур, опасных и вредных материалов, используемых в конструкции изделия, а также опасных и вредных веществ, выделяющихся при его эксплуатации, шума, ультразвука и вибрации, электромагнитных полей и теплового, оптического и рентгеновского излучения. [19]

3.3.1 Расчет заземления

При повреждении изоляции электроустановки, ее корпус и другие конструктивные элементы могут оказаться под напряжением. Если человек прикоснется к такому поврежденному оборудованию, через него пройдет ток замыкания на землю, который может быть опасным для жизни.

Для защиты человека при прикосновении к металлическим частям электроустановки, случайно оказавшимся под напряжением, применяют защитное заземление – преднамеренное соединение корпуса или других металлических конструкций установки с землей. Назначение защитного заземления – создание между корпусом электрического устройства и землей электрического соединения с малым сопротивлением.

При прикосновении человека к заземленному оборудованию, оказавшемуся под напряжением, через его тело пройдет ток малой величины, безопасный для организма. Основной ток замыкания на землю пойдет по заземляющему устройству. Заземляющее устройство – совокупность заземлителя и заземляющих проводников. Заземлитель – металлический проводник, находящийся в непосредственном соприкосновении с землей. Заземляющие проводники соединяют заземляемые части электроустановки с заземлителем. Сопротивление заземляющего устройства в основном определяется сопротивлением растеканию тока с заземлителя в грунт.

Для заземления используют естественные и искусственные заземлители. Естественные заземлители – арматура железобетонных сооружений, фундаменты зданий, трубопроводы и другие металлические конструкции, имеющие надежный контакт с землей. В качестве искусственных заземлителей чаще всего используют вертикально заглубленные стальные трубы, стержни, уголки, соединенные поверху стальной горизонтальной полосой.

Сопротивление заземляющего устройства, к которому присоединены нейтрали трансформаторов либо выводы источников однофазного тока, в любое время годе должно быть не более 4 Ом соответственно при линейном напряжении 380 В источника трехфазного тока.

Сопротивление растеканию тока не должно превышать нормативной величины. Для электроустановок напряжением до 1000 В нормативное значение составляет 4 Ом, а если подсоединенная к сети мощность не превышает 100 кВА – 10 Ом.

Монтажный участок по сборке силового блока привода постоянного тока находится на первом этаже двухэтажного отдельно стоящего кирпичного здания размером 20×10м. Мощность тока, потребляемая участком, превышает 100 кВА и поэтому нормативная величина сопротивления заземлителя Rн не должна превышать 4 Ом. Заземлитель предполагается выполнить из стальных вертикальных стержневых электродов длиной lв = 1,5 м, диаметром d = 0,02 м, верхние концы которых расположены на глубине t0 = 0,8 м. Вертикальные электроды соединены между собой с помощью горизонтального электрода – стальной полосы сечением 4x40 мм, уложенной в земле на глубине t0 = 0,8 м. Вертикальные электроды расположены на расстоянии а = 3м друг от друга. Тип заземлителя выбираем контурный по периметру участка.

Выбираем 3-ю климатическую зону.

Определяем коэффициент сезонности φ для однородной земли: φв =1,2, φг = 2.

Удельное сопротивление однородного грунта (суглинок) ρ0 = 100 Ом·м.

Рассчитываем удельное сопротивление грунта для вертикального электрода:

(3.40)

Удельное сопротивление грунта для горизонтального электрода:

(3.41)

Сопротивление одиночного вертикального заземлителя:

(3.42)

Число вертикальных заземлителей:

(3.43)

Длина горизонтальной полосы:

(3.44)


Сопротивление горизонтального заземлителя:

(3.45)

где b – ширина стальной горизонтальной полосы.

Определяем сопротивление группового заземлителя:

(3.46)

где ηв – коэффициент использования вертикальных заземлителей;

ηг – коэффициент использования горизонтальных заземлителей.

По условиям безопасности заземление должно обладать малым сопротивлением (Rн < 4 Ом), обеспечить которое можно путем увеличения геометрических размеров электродов или увеличив их число, соединенных в контур. Второй путь намного экономичнее по затратам металла и другим условиям. Кроме того, при применении нескольких электродов можно выровнять потенциальную кривую на территории, где они размещены. Поскольку расчетное Rз =4,72 Ом > Rн = 4 Ом, то увеличиваем количество вертикальных электродов до n = 24.

Тогда длина горизонтальной полосы:

(3.47)

Сопротивление горизонтального заземлителя:

(3.48)

Сопротивление группового заземлителя:


(3.49)

где ηв = 0,624; ηг = 0,312.

Так как Rз = 3,6 Ом < Rн = 4 Ом, то этот результат принимаем как окончательный.

Таким образом, проектируемый заземлитель контурный, состоит из 24 вертикальных стержневых электродов длиной 1,5 м, диаметром d = 20мм, заглубленных в землю на 0,8 м и соединенных стальной горизонтальной полосой длиной 75 м, сечением 4х40 мм (рис. 3.4).

Рисунок 3.4 – Схема заземления: 1 – монтажный участок, 2 – вертикальный заземлитель, 3 – горизонтальный заземлитель


Информация о работе «Разработка ветроэнергетической установки»
Раздел: Физика
Количество знаков с пробелами: 103372
Количество таблиц: 3
Количество изображений: 44

Похожие работы

Скачать
17329
11
10

... – нагнетательный насос 2.   Выбор и обоснование конструкции энергоагрегата. Для энергоснабжения материального склада мы выбираем ветроэнергетическую установку, т.к. использование солнечных коллекторов в зимнее время неэффективно. По заданию нам дана ветроэнергетическая установка с вертикальным валом. Такая установка дает нам возможность разместить редуктор и ...

Скачать
71494
16
56

... формулой: , (2.3.14.) где: Eа- емкость аккумулятора, А ч; Uа- напряжение аккумулятора, В. Принимаем Еа = 10(6СТ-210) = 2100 Ач. Таким образом, параметры энергосистемы на основе ВИЭ следую­щие: Основной источник В-установка, Рв= 3 кВт; Дополнительный источник С-установка, Рс= 0,72 кВт; Резерв, аккумуляторы 6СТ-75 Еа= 10*210 =2100 Ач. 3. ...

Скачать
109448
20
7

... северных регионов за счет возведения двойной оболочки здания с использованием солнечной энергии можно обеспечить до 40% экономии тепла. Учитывая развитие технологий возобновляемой энергетики, с должной долей уверенности можно сказать о реальной возможности создания эффективной системы энергоснабжения удаленных от центральной энергосети сельских домов при условии комбинированного использования ...

Скачать
64964
5
0

... соответствующие требованиям технической. 5 Энерго- и материалосбережение Для эффективного материалосбережения при разработке энергосберегающей системы освещения были применены следующие методы: 1.         Уменьшение размеров печатной платы за счет увеличения плотности компоновки и рационального использование пространства платы, что экономит текстолит, затрачиваемый на изготовление платы. ...

0 комментариев


Наверх