3.3 Электробезопасность экспериментальной установки
Основные требования к безопасности электрооборудования изложены в ГОСТ 12.2.007.0-75 системы стандартов безопасности труда.
Стандарт устанавливает общие требования безопасности конструкции изделий, т. е. требования безопасности, предотвращающие или уменьшающие до допустимого уровня воздействия на человека: электрического тока, электрической искры и дуги, движущихся частей изделия, частей, нагревающихся до высоких температур, опасных и вредных материалов, используемых в конструкции изделия, а также опасных и вредных веществ, выделяющихся при его эксплуатации, шума, ультразвука и вибрации, электромагнитных полей и теплового, оптического и рентгеновского излучения. [19]
3.3.1 Расчет заземления
При повреждении изоляции электроустановки, ее корпус и другие конструктивные элементы могут оказаться под напряжением. Если человек прикоснется к такому поврежденному оборудованию, через него пройдет ток замыкания на землю, который может быть опасным для жизни.
Для защиты человека при прикосновении к металлическим частям электроустановки, случайно оказавшимся под напряжением, применяют защитное заземление – преднамеренное соединение корпуса или других металлических конструкций установки с землей. Назначение защитного заземления – создание между корпусом электрического устройства и землей электрического соединения с малым сопротивлением.
При прикосновении человека к заземленному оборудованию, оказавшемуся под напряжением, через его тело пройдет ток малой величины, безопасный для организма. Основной ток замыкания на землю пойдет по заземляющему устройству. Заземляющее устройство – совокупность заземлителя и заземляющих проводников. Заземлитель – металлический проводник, находящийся в непосредственном соприкосновении с землей. Заземляющие проводники соединяют заземляемые части электроустановки с заземлителем. Сопротивление заземляющего устройства в основном определяется сопротивлением растеканию тока с заземлителя в грунт.
Для заземления используют естественные и искусственные заземлители. Естественные заземлители – арматура железобетонных сооружений, фундаменты зданий, трубопроводы и другие металлические конструкции, имеющие надежный контакт с землей. В качестве искусственных заземлителей чаще всего используют вертикально заглубленные стальные трубы, стержни, уголки, соединенные поверху стальной горизонтальной полосой.
Сопротивление заземляющего устройства, к которому присоединены нейтрали трансформаторов либо выводы источников однофазного тока, в любое время годе должно быть не более 4 Ом соответственно при линейном напряжении 380 В источника трехфазного тока.
Сопротивление растеканию тока не должно превышать нормативной величины. Для электроустановок напряжением до 1000 В нормативное значение составляет 4 Ом, а если подсоединенная к сети мощность не превышает 100 кВА – 10 Ом.
Монтажный участок по сборке силового блока привода постоянного тока находится на первом этаже двухэтажного отдельно стоящего кирпичного здания размером 20×10м. Мощность тока, потребляемая участком, превышает 100 кВА и поэтому нормативная величина сопротивления заземлителя Rн не должна превышать 4 Ом. Заземлитель предполагается выполнить из стальных вертикальных стержневых электродов длиной lв = 1,5 м, диаметром d = 0,02 м, верхние концы которых расположены на глубине t0 = 0,8 м. Вертикальные электроды соединены между собой с помощью горизонтального электрода – стальной полосы сечением 4x40 мм, уложенной в земле на глубине t0 = 0,8 м. Вертикальные электроды расположены на расстоянии а = 3м друг от друга. Тип заземлителя выбираем контурный по периметру участка.
Выбираем 3-ю климатическую зону.
Определяем коэффициент сезонности φ для однородной земли: φв =1,2, φг = 2.
Удельное сопротивление однородного грунта (суглинок) ρ0 = 100 Ом·м.
Рассчитываем удельное сопротивление грунта для вертикального электрода:
(3.40)
Удельное сопротивление грунта для горизонтального электрода:
(3.41)
Сопротивление одиночного вертикального заземлителя:
(3.42)
Число вертикальных заземлителей:
(3.43)
Длина горизонтальной полосы:
(3.44)
Сопротивление горизонтального заземлителя:
(3.45)
где b – ширина стальной горизонтальной полосы.
Определяем сопротивление группового заземлителя:
(3.46)
где ηв – коэффициент использования вертикальных заземлителей;
ηг – коэффициент использования горизонтальных заземлителей.
По условиям безопасности заземление должно обладать малым сопротивлением (Rн < 4 Ом), обеспечить которое можно путем увеличения геометрических размеров электродов или увеличив их число, соединенных в контур. Второй путь намного экономичнее по затратам металла и другим условиям. Кроме того, при применении нескольких электродов можно выровнять потенциальную кривую на территории, где они размещены. Поскольку расчетное Rз =4,72 Ом > Rн = 4 Ом, то увеличиваем количество вертикальных электродов до n = 24.
Тогда длина горизонтальной полосы:
(3.47)
Сопротивление горизонтального заземлителя:
(3.48)
Сопротивление группового заземлителя:
(3.49)
где ηв = 0,624; ηг = 0,312.
Так как Rз = 3,6 Ом < Rн = 4 Ом, то этот результат принимаем как окончательный.
Таким образом, проектируемый заземлитель контурный, состоит из 24 вертикальных стержневых электродов длиной 1,5 м, диаметром d = 20мм, заглубленных в землю на 0,8 м и соединенных стальной горизонтальной полосой длиной 75 м, сечением 4х40 мм (рис. 3.4).
Рисунок 3.4 – Схема заземления: 1 – монтажный участок, 2 – вертикальный заземлитель, 3 – горизонтальный заземлитель
... – нагнетательный насос 2. Выбор и обоснование конструкции энергоагрегата. Для энергоснабжения материального склада мы выбираем ветроэнергетическую установку, т.к. использование солнечных коллекторов в зимнее время неэффективно. По заданию нам дана ветроэнергетическая установка с вертикальным валом. Такая установка дает нам возможность разместить редуктор и ...
... формулой: , (2.3.14.) где: Eа- емкость аккумулятора, А ч; Uа- напряжение аккумулятора, В. Принимаем Еа = 10(6СТ-210) = 2100 Ач. Таким образом, параметры энергосистемы на основе ВИЭ следующие: Основной источник В-установка, Рв= 3 кВт; Дополнительный источник С-установка, Рс= 0,72 кВт; Резерв, аккумуляторы 6СТ-75 Еа= 10*210 =2100 Ач. 3. ...
... северных регионов за счет возведения двойной оболочки здания с использованием солнечной энергии можно обеспечить до 40% экономии тепла. Учитывая развитие технологий возобновляемой энергетики, с должной долей уверенности можно сказать о реальной возможности создания эффективной системы энергоснабжения удаленных от центральной энергосети сельских домов при условии комбинированного использования ...
... соответствующие требованиям технической. 5 Энерго- и материалосбережение Для эффективного материалосбережения при разработке энергосберегающей системы освещения были применены следующие методы: 1. Уменьшение размеров печатной платы за счет увеличения плотности компоновки и рационального использование пространства платы, что экономит текстолит, затрачиваемый на изготовление платы. ...
0 комментариев