1.3 Вычисление кратных интегралов

Обычно при вычислении кратных интегралов методом Монте-Карло используют один из двух способов.

Первый способ.

Пусть требуется вычислить кратный интеграл

(3.1)

по области G, лежащей в мерном единичном кубе

Выберем  равномерно распределённых на отрезке  последовательностей случайных чисел


Тогда точки можно рассматривать как случайные, равномерно распределённые в мерном единичном кубе.

Пусть из общего числа  случайных точек  точек попали в область G, остальные  оказались вне G. Тогда при достаточно большом  имеет место приближенная формула:

(3.2)

где под  понимается мерный объём области интегрирования. Если вычисление объёма  затруднительно, то можно принять , и для приближенного вычисления интеграла получим:

(3.3)

Указанный способ можно применить к вычислению кратных интегралов и для произвольной области , если существует такая замена переменных, при которой новая область интегрирования будет заключена в мерном единичном кубе.

Второй способ.

Если функция , то интеграл (3.1) можно рассматривать как объём тела в мерном пространстве, т.е.

(3.5)

где область интегрирования  определяется условиями

Если в области  , то введя новую переменную , получим


где область  лежит в единичном мерном кубе

Возьмём  равномерно распределенных на отрезке  случайных последовательностей

Составим соответствующую последовательность случайных точек

Пусть из общего числа случайных точек  точек принадлежат объёму , тогда имеет место приближенная формула

 (3.6)




Информация о работе «Сущность метода Монте-Карло и моделирование случайных величин»
Раздел: Математика
Количество знаков с пробелами: 26423
Количество таблиц: 6
Количество изображений: 2

Похожие работы

Скачать
21420
5
0

... частности, разрабатываются способы уменьшения дисперсии используемых случайных величин, в результате чего уменьшается ошибка, допускаемая при замене искомого математического ожидания а его оценкой а*. §2. Оценка погрешности метода Монте-Карло. Пусть для получения оценки a* математического ожидания а случайной величины Х было произведено n независимых испытаний (разыграно n возможных значений Х) ...

Скачать
12333
4
20

... в особенности многомерных, для решения систем алгебраических уравнений высокого порядка, для исследования различного рода сложных систем (автоматического управления, экономических, биологических и т.д.). Сущность метода Монте-Карло состоит в следующем: требуется найти значение а некоторой изучаемой величины. Для этого выбирают такую случайную величину X, математическое ожидание которой а: (1) ...

Скачать
19446
2
2

етка – одно из простейших средств получения случайных чисел с хорошим равномерным распределением, на использовании которых основан этот метод. Метод Монте – Карло это статистический метод. Его используют при вычислении сложных интегралов, решении систем алгебраических уравнений высокого порядка, моделировании поведения элементарных частиц, в теориях передачи информации, при исследовании сложных ...

Скачать
24305
0
0

... опыт», учится на своих и чужих ошибках и постепенно выучиваться принимать правильные решения – если не оптимальные, то почти оптимальные. Попробуем проиллюстрировать процесс имитационного моделирования через сравнение с классической математической моделью.  Этапы процесса построения математической модели сложной системы: 1.            Формулируются основные вопросы о поведении ...

0 комментариев


Наверх