2.  Геометрический смысл определенного интеграла

Пусть на отрезке  задана непрерывная неотрицательная функция . Криволинейной трапецией называется фигура, ограниченная сверху графиком функции y = f(x), снизу – осью Ох, слева и справа – прямыми x = a и x = b (рис. 2).

Рис. 2

Определенный интеграл  от неотрицательной функции  с геометрической точки зрения численно равен площади криволинейной трапеции, ограниченной сверху графиком функции , слева и справа – отрезками прямых  и , снизу – отрезком  оси Ох.

3. Основные свойства определенного интеграла

 

1.  Значение определенного интеграла не зависит от обозначения переменной интегрирования: .

2. Определенный интеграл с одинаковыми пределами интегрирования равен нулю:

3.  Если , то, по определению, полагаем

4.  Постоянный множитель можно выносить за знак определенного интеграла:

5.  Определенный интеграл от алгебраической суммы двух функций равен алгебраической сумме определенных интегралов от этих функций:

.

6.  Если функция  интегрируема на  и , то

.

7.  (теорема о среднем). Если функция  непрерывна на отрезке , то на этом отрезке существует точка , такая, что .

4. Формула Ньютона–Лейбница

Вычисление определенных интегралов через предел интегральных сумм связано с большими трудностями. Поэтому существует другой метод, основанный на тесной связи, существующей между понятиями определенного и неопределенного интегралов.

Теорема 2. Если функция  непрерывна на отрезке  и  – какая-либо ее первообразная на этом отрезке, то справедлива следующая формула:


, (2)

которая называется формулой Ньютона–Лейбница. Разность  принято записывать следующим образом:

,

где символ называется знаком двойной подстановки.

Таким образом, формулу (2) можно записать в виде:

.

Нахождение определенных интегралов с помощью формулы Ньютона-Лейбница осуществляется в два этапа: на первом этапе находят некоторую первообразную  для подынтегральной функции ; на втором – находится разность  значений этой первообразной на концах отрезка .

Пример 1. Вычислить интеграл .

Решение. Для подынтегральной функции  произвольная первообразная имеет вид . Так как в формуле Ньютона-Лейбни-ца можно использовать любую первообразную, то для вычисления ин-
теграла возьмем первообразную, имеющую наиболее простой вид: . Тогда .

Пример 2. Вычислить интеграл .

Решение. По формуле Ньютона-Лейбница имеем:

.


Информация о работе «Определенный интеграл»
Раздел: Математика
Количество знаков с пробелами: 15080
Количество таблиц: 0
Количество изображений: 15

Похожие работы

Скачать
7939
0
1

... с содержится в промежутке . Таким образом, мы вновь получили лангранжеву форму дополнительного члена. 5. Заключение. В курсовой работе даны определения определенного и несобственного интеграла и его виды, рассмотрены вопросы некоторого приложения определенного интеграла. В частности, формула Валлиса, имеющая историческое значение, как первое представление числа p в виде предела легко вычисляемой ...

Скачать
5433
0
0

ределенный интеграл функции типа численно представляет собой площадь криволинейной трапеции ограниченной кривыми x=0, y=a, y=b и y= (Рис. 1). Есть два метода вычисления этой площади или определенного интеграла — метод трапеций (Рис. 2) и метод средних прямоугольников (Рис. 3). Рис. 1. Криволинейная трапеция. Рис. 2. Метод трапеций. Рис. 3. Метод средних прямоугольников. По методам ...

Скачать
9922
2
7

... n (увеличения числа интеграций) повышается точность приближенного вычисления интегралов Задание на лабораторную работу 1)  Написать программы вычисления определенного интеграла методами: средних, правых прямоугольников, трапеции и методом Симпсона. Выполнить интегрирование следующих функций: 1.  f(x)=x f(x)=x2 f(x)= x3 f(x)= x4 на отрезке [0, 1] с шагом , , 2.  f(x)= f(x)= f(x)= ...

Скачать
9905
2
5

... ( процедура TABL ) и интеграл.  4. Заключение и выводы. Таким образом очевидно, что при вычислении определенных интегралов с помощью квадратурных формул, а в частности по формуле Чебышева не дает нам точного значения, а только приближенное. Чтобы максимально приблизиться к достоверному значению интеграла нужно уметь правильно выбрать метод и формулу, по которой будет вестись расчет. Так же ...

0 комментариев


Наверх