6. Интегрирование по частям
Теорема 4. Пусть функции и
имеют непрерывные производные на отрезке
. Тогда имеет место следующая формула интегрирования по частям:
. (4)
Доказательство
Так как , то функция
является первообразной для функции
. Тогда по формуле Ньютона–Лейбница получаем
,
откуда
.
Пример 6. Вычислить .
Решение. Положим , отсюда
. По формуле (4) находим
.
Пример 7. Вычислить .
Решение. Пусть , тогда
. Применяя формулу интегрирования по частям, получаем
.
Пример 8. Вычислить .
Решение. Полагая , определяем
. Следовательно:
[к полученному интегра-лу снова применяем формулу интегрирования по частям:
; следовательно:
] =
=
.
Лекция 2. Применение определенных интегралов. Несобственные интегралы
1. Площадь криволинейной трапеции
Пусть функция неотрицательна и непрерывна на отрезке
. Тогда, согласно геометрическому смыслу определенного интеграла, площадь криволинейной трапеции, ограниченной сверху графиком этой функции, снизу – осью
, слева и справа – прямыми
и
(см. рис. 2) вычисляется по формуле
. (5)
Пример 9. Найти площадь фигуры, ограниченной линией и осью
.
Решение. Графиком функции является парабола, ветви которой направлены вниз. Построим ее (рис. 3). Чтобы определить пределы интегрирования, найдем точки пересечения линии (параболы) с осью
(прямой
). Для этого решаем систему уравнений
Получаем: , откуда
,
; следовательно,
,
.
Рис. 3
Площадь фигуры находим по формуле (5):
(кв. ед.).
Если функция неположительна и непрерывна на отрезке
, то площадь криволинейной трапеции, ограниченной снизу графиком данной функции, сверху – осью
, слева и справа – прямыми
и
, вычисляется по формуле
. (6)
В случае если функция непрерывна на отрезке
и меняет знак в конечном числе точек, то площадь заштрихованной фигуры (рис. 4) равна алгебраической сумме соответствующих определенных интегралов:
. (7)
Рис. 4
Пример 10. Вычислить площадь фигуры, ограниченной осью и графиком функции
при
.
Рис. 5
Решение. Сделаем чертеж (рис. 5). Искомая площадь представляет собой сумму площадей и
. Найдем каждую из этих площадей. Вначале определим пределы интегрирования, решив систему
Получим
,
. Следовательно:
;
.
Таким образом, площадь заштрихованной фигуры равна
(кв. ед.).
Рис. 6
Пусть, наконец, криволинейная трапеция ограничена сверху и снизу графиками непрерывных на отрезке функций
и
,
а слева и справа – прямыми и
(рис. 6). Тогда ее площадь вычисляется по формуле
. (8)
Пример 11. Найти площадь фигуры, ограниченной линиями и
.
Решение. Данная фигура изображена на рис. 7. Площадь ее вычислим по формуле (8). Решая систему уравнений находим
,
; следовательно,
,
. На отрезке
имеем:
. Значит, в формуле (8) в качестве
возьмем x, а в качестве
–
. Получим:
(кв. ед.).
Более сложные задачи на вычисление площадей решают путем разбиения фигуры на непересекающиеся части и вычисления площади всей фигуры как суммы площадей этих частей.
Рис. 7
Пример 12. Найти площадь фигуры, ограниченной линиями ,
,
.
Решение. Сделаем чертеж (рис. 8). Данную фигуру можно рассматривать как криволинейную трапецию, ограниченную снизу осью , слева и справа – прямыми
и
, сверху – графиками функций
и
. Так как фигура ограничена сверху графиками двух функций, то для вычисления ее площади разобьем данную фигуру прямой
на две части (1 – это абсцисса точки пересечения линий
и
). Площадь каждой из этих частей находим по формуле (4):
(кв. ед.);
(кв. ед.). Следовательно:
(кв. ед.).
Рис. 8
|
Рис. 9
В заключение отметим, что если криволинейная трапеция ограничена прямыми и
, осью
и непрерывной на
кривой
(рис. 9), то ее площадь находится по формуле
.
... с содержится в промежутке . Таким образом, мы вновь получили лангранжеву форму дополнительного члена. 5. Заключение. В курсовой работе даны определения определенного и несобственного интеграла и его виды, рассмотрены вопросы некоторого приложения определенного интеграла. В частности, формула Валлиса, имеющая историческое значение, как первое представление числа p в виде предела легко вычисляемой ...
ределенный интеграл функции типа численно представляет собой площадь криволинейной трапеции ограниченной кривыми x=0, y=a, y=b и y= (Рис. 1). Есть два метода вычисления этой площади или определенного интеграла — метод трапеций (Рис. 2) и метод средних прямоугольников (Рис. 3). Рис. 1. Криволинейная трапеция. Рис. 2. Метод трапеций. Рис. 3. Метод средних прямоугольников. По методам ...
... n (увеличения числа интеграций) повышается точность приближенного вычисления интегралов Задание на лабораторную работу 1) Написать программы вычисления определенного интеграла методами: средних, правых прямоугольников, трапеции и методом Симпсона. Выполнить интегрирование следующих функций: 1. f(x)=x f(x)=x2 f(x)= x3 f(x)= x4 на отрезке [0, 1] с шагом , , 2. f(x)= f(x)= f(x)= ...
... ( процедура TABL ) и интеграл. 4. Заключение и выводы. Таким образом очевидно, что при вычислении определенных интегралов с помощью квадратурных формул, а в частности по формуле Чебышева не дает нам точного значения, а только приближенное. Чтобы максимально приблизиться к достоверному значению интеграла нужно уметь правильно выбрать метод и формулу, по которой будет вестись расчет. Так же ...
0 комментариев