2.  Объем тела вращения

Пусть криволинейная трапеция, ограниченная графиком непрерывной на отрезке  функции , осью , прямыми  и , вращается вокруг оси  (рис. 10). Тогда объем полученного тела вращения вычисляется по формуле

. (9)

 

Пример 13. Вычислить объем тела, полученного вращением вокруг оси  криволинейной трапеции, ограниченной гиперболой , прямыми ,  и осью .

Решение. Сделаем чертеж (рис. 11).

Из условия задачи следует, что , . По формуле (9) получаем


.

Рис. 10


Рис. 11

Объем тела, полученного вращением вокруг оси Оу криволинейной трапеции, ограниченной прямыми у = с и у = d, осью Оу и графиком непрерывной на отрезке  функции  (рис. 12), определяется по формуле

. (10)

х = j (у)

 

Рис. 12

 

Пример 14. Вычислить объем тела, полученного вращением вокруг оси Оу криволинейной трапеции, ограниченной линиями х2 = 4у, у = 4, х = 0 (рис. 13).

Решение. В соответствии с условием задачи находим пределы интегрирования: , . По формуле (10) получаем:

.

Рис. 13

3.  Длина дуги плоской кривой

 

Пусть кривая , заданная уравнением , где , лежит в плоскости  (рис. 14).

Рис. 14


Определение. Под длиной дуги  понимается предел, к которому стремится длина ломаной линии, вписанной в эту дугу, когда число звеньев ломаной стремится к бесконечности, а длина наибольшего звена стремится к нулю.

Если функция  и ее производная  непрерывны на отрезке , то длина дуги кривой  вычисляется по формуле

. (11)

Пример 15. Вычислить длину дуги кривой , заключенной между точками, для которых .

Решение. Из условия задачи имеем . По формуле (11) получаем:

.



Информация о работе «Определенный интеграл»
Раздел: Математика
Количество знаков с пробелами: 15080
Количество таблиц: 0
Количество изображений: 15

Похожие работы

Скачать
7939
0
1

... с содержится в промежутке . Таким образом, мы вновь получили лангранжеву форму дополнительного члена. 5. Заключение. В курсовой работе даны определения определенного и несобственного интеграла и его виды, рассмотрены вопросы некоторого приложения определенного интеграла. В частности, формула Валлиса, имеющая историческое значение, как первое представление числа p в виде предела легко вычисляемой ...

Скачать
5433
0
0

ределенный интеграл функции типа численно представляет собой площадь криволинейной трапеции ограниченной кривыми x=0, y=a, y=b и y= (Рис. 1). Есть два метода вычисления этой площади или определенного интеграла — метод трапеций (Рис. 2) и метод средних прямоугольников (Рис. 3). Рис. 1. Криволинейная трапеция. Рис. 2. Метод трапеций. Рис. 3. Метод средних прямоугольников. По методам ...

Скачать
9922
2
7

... n (увеличения числа интеграций) повышается точность приближенного вычисления интегралов Задание на лабораторную работу 1)  Написать программы вычисления определенного интеграла методами: средних, правых прямоугольников, трапеции и методом Симпсона. Выполнить интегрирование следующих функций: 1.  f(x)=x f(x)=x2 f(x)= x3 f(x)= x4 на отрезке [0, 1] с шагом , , 2.  f(x)= f(x)= f(x)= ...

Скачать
9905
2
5

... ( процедура TABL ) и интеграл.  4. Заключение и выводы. Таким образом очевидно, что при вычислении определенных интегралов с помощью квадратурных формул, а в частности по формуле Чебышева не дает нам точного значения, а только приближенное. Чтобы максимально приблизиться к достоверному значению интеграла нужно уметь правильно выбрать метод и формулу, по которой будет вестись расчет. Так же ...

0 комментариев


Наверх