Приазовский государственный технический университет
Мариупольский городской технический лицей
секция: Математика
тема: «Число как основное понятие математики»
ВЫПОЛНИЛ: ученик 112 группы
Анищенко Евгений АлександровичНАУЧНЫЙ РУКОВОДИТЕЛЬ:
Ткаченко Светлана Гавриловна
Мариуполь, 2002 г.
СОДЕРЖАНИЕВведение………………………………………………………….. 3
1.1. Функции натуральных чисел………………………………. … 6
2. Рациональные числа…………………………………………….. … 6
2.1. Дробные числа……………………………………………. … 6
2.1.1. О происхождении дробей……………………………. 6
2.1.2. Дроби в Древнем Риме……………………………….. 7
2.1.3. Дроби в Древнем Египте…………………………….. 7
2.1.4. Вавилонские шестидесятеричные дроби………….. .. 8
2.1.5. Нумерация и дроби в Древней Греции……………. .. 9
2.1.6. Нумерация и дроби на Руси………………………… 10
2.1.7. Дроби в других государствах древности………….. 11
2.1.8. Десятичные дроби…………………………………… 12
2.1.8.1. Проценты……………………………………. 13
2.2. Отрицательные числа............................................................... 14
2.2.1. Отрицательные числа в Древней Азии……………… 14
2.2.2. Развитие идеи отрицательного количества в Европе.. 15
3. Действительные числа……………………………………………… 16
3.1. Иррациональные числа……………………………………… 16
3.2. Алгебраические и трансцендентные числа………………… 18
4. Комплексные числа………………………………………………… 18
4.1. Мнимые числа……………………………………………….. 18
4.2. Геометрическое истолкование комплексных чисел……… 20
5. Векторные числа…………………………………………………… 21
6. Матричные числа………………………………………………….. 21
7. Трансфинитные числа…………………………………………….. 22
8. Функции = функциональные числа?…………………………….. 23
8.1. Функциональная зависимость……………………………….. 23
8.2. Развитие функциональных чисел…………………………. .. 24
Заключение………………………………………………………… 26
Литература. ………………………………………………………… 27
«Послушайте, что смертным сделал я… Число им подарил И буквы научил соединять… Эсхил, «Закованный Прометей»Эсхил, «Закованный Прометей» «Если бы ни число и его природа, ничто существующее нельзя было бы постичь им само по себе, ни в его отношениях к другим вещам. Мощь чисел проявляется во всех деяниях и помыслах людей, во всех ремес- лах и в музыке» Пифагореец Филолай, 5 в. до н. э. |
Число является одним из основных понятий математики. Понятие числа развивалось в тесной связи с изучением величин; эта связь сохраняется и теперь. Во всех разделах современной математики приходится рассматривать разные величины и пользоваться числами
Существует большое количество определений понятию «число».
Первое научное определение числа дал Эвклид в своих «Началах», которое он, очевидно, унаследовал от своего соотечественника Эвдокса Книдского (около 408 – около 355 гг. до н. э.): «Единица есть то, в соответствии с чем каждая из существующих вещей называется одной. Число есть множество, сложенное из единиц». Так определял понятие числа и русский математик Магницкий в своей «Арифметике» (1703 г.).
Еще раньше Эвклида Аристотель дал такое определение: «Число есть множество, которое измеряется с помощью единиц».
Со слов греческого философа Ямвлиха, еще Фалес Милетский – родоначальник греческой стихийно-материалистической философии – учил, что «число есть система единиц». Это определение было известно и Пифагору.
В своей «Общей арифметике» (1707 г) великий английский физик, механик, астроном и математик Исаак Ньютон пишет: «Под числом мы подра- зумеваем не столько множество единиц, сколько абстрактное отношение какой-нибудь величины к другой величине такого же рода, взятой за единицу. Число бывает трех видов: целое, дробное и иррациональное. Целое число есть то, что измеряется единицей; дробное – кратной частью единицы, иррациональное – число, не соизмеримое с единицей».
Наш мариупольский математик С.Ф.Клюйков также внес свой вклад в определение понятия числа: «Числа – это математические модели реального мира, придуманные человеком для его познания». Он же внес в традиционную классификацию чисел так называемые «функциональные числа», имея в виду то, что во всем мире обычно именуют функциями. Более подробно об этом изложено в главе 9.
1. Натуральные числа
Считается, что термин «натуральное число» впервые применил римский государственный деятель, философ, автор трудов по математике и теории музыки Боэций (480 – 524 гг.), но еще греческий математик Никомах из Геразы говорил о натуральном, то есть природном ряде чисел.
Понятием «натуральное число» в современном его понимании последовательно пользовался выдающийся французский математик, философ-просветитель Даламбер (1717-1783 гг.).
Первоначальные представления о числе появились в эпоху каменного века, при переходе от простого собирания пищи к ее активному производству, примерно 100 веков до н. э. Числовые термины тяжело зарождались и медленно входили в употребление. Древнему человеку было далеко до абстрактного мышления, хватило того, что он придумал числа: «один» и «два». Остальные количества для него оставались неопределенными и объединялись в понятии «много».
Росло производство пищи, добавлялись объекты, которые требовалось учитывать в повседневной жизни, в связи с чем придумывались новые числа: «три», «четыре»… Долгое время пределом познания было число «семь».
О непонятном говорили, что эта книжка «за семью печатями», знахарки в сказках давали больному «семь узелков с лекарственными травами, которые надо было настоять на семи водах в течение семи дней и принимать каждодневно по семь ложек».
Познаваемый мир усложнялся, требовались новые числа. Так дошли до нового предела. Им стало число 40. Запредельные количества моделировались громадным по тем временам числом «сорок сороков», равным 1600.
Позднее, когда число «сорок» уже перестало быть граничным, оно стало играть большую роль в русской метрологии как основа системы мер: пуд имел 40 фунтов, бочка-сороковка – сорок ведер и т.д.
Большой интерес вызывает история числа «шестьдесят», которое часто фигурирует в вавилонских, персидских и греческих легендах как синоним большого числа. Вавилоняне считали его Божьим числом: шестьдесят локтей в высоту имел золотой идол из храма вавилонского царя Навуходоносора. Позже с тем же самым значением (неисчислимое множество) возникли числа, кратные 60: 300, 360. Со временем число 60 в Вавилоне легло в основу шестидесятеричной системы исчисления, следы которой сохранились до наших дней при измерении времени и углов.
Следующим пределом у славянского народа было число «тьма», (у древних греков – мириада), равное 10 000, а запределом – «тьма тьмущая», равное 100 миллионам. У славян применяли также и иную систему исчисления (так называемое «большое число» или «большой счет»). В этой системе «тьма» равнялась 106, «легион» – 1012, «леодр» – 1024, «ворон» – 1048, «колода» – 1096, после чего добавляли, что большего числа не существует.
В Античном мире дальше всех продвинулись Архимед (III в. до н.э.) в «исчислении песчинок» - до числа 10, возведенного в степень 8х1016 , и Зенон Элейский (IV в. до н. э.) в своих парадоксах – до бесконечности ∞.
1.1. Функции натуральных чисел
Натуральные числа имеют две основные функции:
характеристика количества предметов;
характеристика порядка предметов, размещенных в ряд.В соответствии с этими функциями возникли понятия порядкового числа (первый, второй и т.д.) и количественного числа (один, два и т.д.).
Долго и трудно человечество добиралось до 1-го уровня обобщения чисел. Сто веков понадобилось, чтобы выстроить ряд самых коротких натуральных чисел от единицы до бесконечности:1, 2, … ∞. Натуральных потому, что ими обозначались (моделировались) реальные неделимые объекты: люди, животные, вещи…
2. Рациональные числа
2.1. Дробные числа
2.1.1. О происхождении дробей
С возникновением представлений о целых числах возникали представления и о частях единицы, точнее, о частях целого конкретного предмета. С появлением натурального числа n возникло представление о дроби вида 1/n, которая называется сейчас аликвотной, родовой или основной.
Чтобы выяснить вопрос о происхождении дроби, надо остановиться не на счете, а на другом процессе, который возник со стародавних времен, - на измерении. Исторически дроби возникли в процессе измерения.
В основе любого измерения всегда лежит какая-то величина (длина, объем, вес и т.д.). Потребность в более точных измерениях привела к тому, что начальные единицы меры начали дробить на 2, 3 и более частей. Более мелкой единице меры, которую получали как следствие раздробления, давали индивидуальное название, и величины измеряли уже этой более мелкой единицей.
Так возникали первые конкретные дроби как определенные части каких-то определенных мер. Только гораздо позже названиями этих конкретных дробей начали обозначать такие же самые части других величин, а потом и абстрактные дроби.
... в мир кибернетики: понятие клеточного автомата и «универсального конструктора» (самовоспроизводящегося клеточного автомата). Результатом этих обманчиво простых мысленных экспериментов стало точное понятие самовоспроизведения, которое кибернетика приняла как основное понятие. Понятие, что те же самые свойства генетического воспроизводства относились к социальному миру, живым клеткам и даже ...
в и формальных систем является центральной в дисциплине. В настоящие время от нее возникли ответвления, например, разработка алгоритмических языков программирования.Одной из важнейших проблем в дискретной математики является проблема сложности вычислений.Теория сложности вычислений помогает оценить расход времени и памяти при решении задач на ЭВМ. Теория сложности позволяет выделить объективно ...
... как на вычислительную, для которой характерны алгебраические методы: - измерение площадей и объёмов; - теорема Пифагора; - измерение круга и шара; - определение расстояний до недоступных предметов. Заключение На основании всего вышеизложенного можно сделать вывод о том, что развитие математики в древнем Китае со II в. до н.э. по VII в.н.э. дало сильный толчок для дальнейшего её соверш
... Е и множество и мы рассматриваем все его подмножества, то множество Е называется униварсельным. Пример: Если за Е взять множество книг то его подмножества: художественные книги, книги по математике, физики, физики … Если универсальное множество состоит из n элементов, то число подмножеств = 2n. Если , состоящее из элементов E, не принадлежащих А, называется дополненным. Множество можно задать: ...
0 комментариев