8.1. Функциональная зависимость

Число как основное понятие математикиТак, система координат была предложена в 1637 году Рене Декартом не для изображения комплексных чисел, а для представления функций, уравнений, описывающих различные кривые линии, поверхности, объемы тел – моделирующих аналитически любые геометрические формы. Но не только один Декарт, много других ученых до и после него приложило немало усилий в формирование нового общего понятия – функциональная зависимость.

Для этого пришлось перейти от конкретных чисел к их буквенным символам, которые могли принимать то одно, то другое количественное значение, могли меняться, были переменными. Эти переменные величины назвали аргументами и функциями, а выражения, связывающие их, - уравнениями, формулами, функциональными зависимостями. И так увлеклись этими названиями, отражающими только одно из свойств чисел, что забыли:

аргументы и функции первоначально все-таки числа, но уже иные – функциональные числа. Это такие же математические модели, как и предыдущие (натуральные, рациональные, действительные) числа, но с новым свойством – способностью моделировать не только количество, но и его функциональную зависимость от других количеств. Это позволило моделировать не только «стада баранов», но и изменяющиеся процессы, движение, саму жизнь…

С.Ф.Клюйков выделяет функциональные числа как 8-ой уровень обобщения чисел.

И.Бернулли (1718 г) и Л.Эйлер (1748 г) называли функцией «количество», образованное переменными и постоянными величинами, зависящее от них. П.Дирихле (1837 г) называл то же «количество» - «значение», которому соответствует определенное значение аргумента. Н.И.Лобачевскмй (1834 г) назвал функцией «число», зависящее от аргумента. БСЭ (1978 г) называет функцией «зависимость» двух переменных величин.

Таким образом, разные авторы дают разное определение функции: «количество», «число», «зависимость», акцентируясь на разных гранях этого сложного понятия, так как функция одновременно и «количество», и «число», и «зависимость», а именно: функция – это число, моделирующее количество и зависимость.

8.2. Развитие функциональных чисел

История зарождения и развития функциональных чисел чрезвычайно длительна и богата. Их совершенствовали уже ученые Древнего Востока (Х в. до н. э.), находя объемы сосудов для зерна, сдаваемого в виде налога; античные греки (III в. до н.э.), исследуя конические сечения; Галилей (1638 г.), проверяя опытом свои формулы движения тел. Впервые ясно и отчетливо функциональные числа были представлены Лагранжем (1797 г.) в теории функций действительного переменного и ее приложении к разнообразным задачам алгебры и геометрии. Однако в наши дни функциональные числа продолжают совершенствовать, несмотря на громадный накопленный опыт: весь математический анализ с его бесконечными рядами, пределами, минимумами и максимумами, с дифференциальным, интегральным и вариационным исчислением, уравнениями и методами их решения.

Но еще более значительными были успехи математики при добавлении способности моделировать функциональную зависимость комплексным числам (Даламбер, 1746 г.). Так возникли комплексно-функциональные числа (9-ый уровень обобщения) в форме функций комплексного переменного, с помощью которых были построены многие полезные математические модели сложных процессов, упрощенно доказательство многих теорем, выполнено описание двухмерных векторов, скалярных и векторных полей, отображение одной плоскости на другую и т.д.

Благодаря соединению способности моделировать функциональную зависимость с векторными числами (Гамильтон, 1853 г.), возникли векторно-функциональные числа (10-ый уровень обобщения). А это – векторный анализ, векторные функции, моделирование переменных полей в сплошных средах и многие достижения теоретической физики…

Добавление матричным числам способности моделировать функциональную зависимость (Клебш, 1861 г.) создало матрично-функциональные числа (11-ый уровень обобщения), а с ними: алгебру матриц, матричное представление линейных векторных пространств и линейных преобразователей, много новых математических моделей, тензорный анализ пространств с кривизной. теорию поля в физике и т.д.

Если добавить трансфинитным числам Кантора способность моделировать функциональную зависимость, то возникнут новые, трансфинитно-функциональные числа (12-ый уровень обобщения), функции трансфинитного переменного, которые, благодаря максимальному на сегодняшний день обобщению, позволят с большей простотой и стандартностью промоделировать все доступное предыдущим числам и откроют новые перспективы в моделировании еще более сложных задач.

Заключение

1. Показано, что современная наука встречается с величинами такой сложной природы, что для их изучения приходится изобретать все новые виды чисел.

2. При введении новых чисел большое значение имеют два обстоятельства:

правила действий над ними должны быть полностью определены и не вели к противоречиям;

новые системы чисел должны способствовать или решению новых задач, или усовершенствовать уже известные решения.

3. К настоящем у времени существует семь общепринятых уровней обобщения чисел: натуральные, рациональные, действительные, комплексные, векторные , матричные и трансфинитные числа. Отдельными учеными предлагается считать функции функциональными числами и расширить степень обобщения чисел до двенадцати уровней.


Информация о работе «Число как основное понятие математики»
Раздел: Математика
Количество знаков с пробелами: 40221
Количество таблиц: 2
Количество изображений: 0

Похожие работы

Скачать
24715
0
0

... в мир кибернетики: понятие клеточного автомата и «универсального конструктора» (самовоспроизводящегося клеточного автомата). Результатом этих обманчиво простых мысленных экспериментов стало точное понятие самовоспроизведения, которое кибернетика приняла как основное понятие. Понятие, что те же самые свойства генетического воспроизводства относились к социальному миру, живым клеткам и даже ...

Скачать
6003
0
1

в и формальных систем является центральной в дисциплине. В настоящие время от нее возникли ответвления, например, разработка алгоритмических языков программирования.Одной из важнейших проблем в дискретной математики является проблема сложности вычислений.Теория сложности вычислений помогает оценить расход времени и памяти при решении задач на ЭВМ. Теория сложности позволяет выделить объективно ...

Скачать
15572
0
0

... как на вычислительную, для которой характерны алгебраические методы: - измерение площадей и объёмов; - теорема Пифагора; - измерение круга и шара; - определение расстояний до недоступных предметов. Заключение На основании всего вышеизложенного можно сделать вывод о том, что развитие математики в древнем Китае со II в. до н.э. по VII в.н.э. дало сильный толчок для дальнейшего её соверш

Скачать
11313
1
5

... Е и множество и мы рассматриваем все его подмножества, то множество Е называется униварсельным. Пример: Если за Е взять множество книг то его подмножества: художественные книги, книги по математике, физики, физики … Если универсальное множество состоит из n элементов, то число подмножеств = 2n. Если , состоящее из элементов E, не принадлежащих А, называется дополненным. Множество можно задать: ...

0 комментариев


Наверх