4.2. Геометрическое истолкование комплексных чисел

Около 1800-го года сразу несколько математиков (Вессель, Арган, Гаусс) поняли, что комплексными числами можно моделировать векторные величины на плоскости.

Если действительные числа (состоящие из одного элемента) одномерны – они размещаются на одной координатной оси. Комплексные числа состоят из двух элементов, для их представления необходима уже плоскость и две координатные оси. Это значит, что они двумерны.

Оказалось, что комплексное число z = a + b · i можно изобразить точкой М(a,b) на координатной плоскости. Позднее выяснили, что удобнее всего изображать число не самой точкой М, а в виде вектора Число как основное понятие математики, идущего из начала координат в точку с координатами а и b. Вектор Число как основное понятие математикиможно задавать не только его координатами a и b, но также длиной r и углом φ, который он образует с положительным направлением оси абсцисс. При этом a = r · cos φ, b = r · sin φ и число z принимает вид z = r ·(cos φ + i · sin φ), который называется тригонометрической формой комплексного числа. Число r называют модулем комплексного числа z и обозначают Число как основное понятие математики. Число φ называют аргументом z и обозначают Arg Z. Заметим, что если z = 0, значение Arg Z не определено, а при z ≠ 0 оно определено с точностью до кратного 2π. Упомянутая ранее формула Эйлера позволяет записать число z в виде z = r · eiּφ (показательная форма комплексного числа)

Геометрическое истолкование комплексных чисел позволило определить многие понятия, связанные с функцией комплексного переменного, расширило область их применения.

5. Векторные числа

В дальнейшем стали разыскивать некие трехмерные числа, которые моделировали бы векторные величины в пространстве с его тремя координатными осями.

Бился над этой задачей и ирландский ученый Гамильтон. После 15-ти лет работы в 1843 году Гамильтон придумал таки трехмерные числа a + bi + cj + dk, где i = j = k = Число как основное понятие математикии откладываются каждый на своей оси. Такие числа - комплексные a + bi и мнимые cj и dk по двум дополнительным осям – Гамильтон назвал кватернионами (quaterni в переводе с латыни – четыре). Позже, в 1853 году, как вариант кватернионов, Гамильтон предложил более удобные числа bi + cj + dk и назвал их векторными числами. Они и обобщили все предыдущие числа на 5-ом уровне обобщения.

6. Матричные числа

Алгебраические операции над векторными величинами создали многоэлементные числовые объекты, названные по предложению Эйнштейна тензорными величинами. Для их моделирования Артур Кэли в 1850 году ввел числа, в которых элементы (более трех) записывались уже квадратными и прямоугольными таблицами (матрицами) и рассматривались как единый числовой объект.

Векторные числа + тензорные величины породили матричные числа. Это был 6-ой уровень обобщения чисел.

Выделим особенность всех сложных (комплексных, векторных, матричных) чисел: они моделируют сразу два свойства – количество и направление моделируемых величин.

7. Трансфинитные числа

Наконец, в 1883 году немецкий ученый Георг Кантор, по-видимому, оценив многовековую историю последовательного обобщения чисел, в которой натуральные числа были обобщены рациональными, а те в свою очередь – действительными, те – комплексными, те – векторными, те – матричными, создал на этом материале свою теорию трансфинитных (бесконечных, запредельных) чисел.

Для этого он назвал множеством всякий набор элементов, который можно сопоставить с частью самого себя, как например, целые числа сопоставляются с четными числами:Число как основное понятие математикиКантор заметил, что такое множество должно содержать бесконечное число элементов. А если эти элементы сопоставимы с множеством натуральных чисел, то их количество образует первое трансфинитное число א0 (алеф-нуль – с иврита). Но множество א0 тоже бесконечно много, и они вместе, как количество элементов нового множества, образуют следующее трансфинитное число א1 . И так далее…

Число как основное понятие математикиТакой красивой теорией Кантор завершил обобщение чисел на 7-ом уровне. И до настоящего времени абстрактнее ее нет: пока ничто не поглотило трансфинитные числа. Однако правда и то, что трансфинитные числа не нашли еще применения за пределами самой математики. История с нулем и комплексными числами снова повторяется для трансфинитных чисел: что ими можно моделировать? Уже больше века не знают. Может, Кантор породил красивую, но мертвую теорию?

Кантор долго анализировал трансфинитные числа и установил, что они могут моделировать либо просто количество (тогда это количественные, кардинальные трансфинитные числа, например – множество учеников в классе), либо количество и направление (тогда это порядковые, ординальные трансфинитные числа, например – то же множество учеников, но упорядоченное по успеваемости). Но эти свойства (количество и направление) успешно моделируются числа меньших уровней обобщения. А таблица чисел подсказывает закономерность: чтобы стать абстрактнее, новые числа должны моделировать больше, развиваясь от уровня к уровню либо экстенсивно, меняясь количественно (например, в учете моделирующих элементов числами уровней 1, 2, 3: натуральные + ноль + отрицательные + иррациональные; или в учете моделируемых направлений числами уровней 3, 4, 5, 6: одномерно-двумерные-трехмерные-многомерные и т.п).

8. Функции = функциональные числа?

Число как основное понятие математикиНаш земляк С.Ф.Клюйков утверждает, что принятые во всем мире и представленные в таблице 1 уровни обобщения чисел не совсем полны, они включает не все уже известные числа.


Информация о работе «Число как основное понятие математики»
Раздел: Математика
Количество знаков с пробелами: 40221
Количество таблиц: 2
Количество изображений: 0

Похожие работы

Скачать
24715
0
0

... в мир кибернетики: понятие клеточного автомата и «универсального конструктора» (самовоспроизводящегося клеточного автомата). Результатом этих обманчиво простых мысленных экспериментов стало точное понятие самовоспроизведения, которое кибернетика приняла как основное понятие. Понятие, что те же самые свойства генетического воспроизводства относились к социальному миру, живым клеткам и даже ...

Скачать
6003
0
1

в и формальных систем является центральной в дисциплине. В настоящие время от нее возникли ответвления, например, разработка алгоритмических языков программирования.Одной из важнейших проблем в дискретной математики является проблема сложности вычислений.Теория сложности вычислений помогает оценить расход времени и памяти при решении задач на ЭВМ. Теория сложности позволяет выделить объективно ...

Скачать
15572
0
0

... как на вычислительную, для которой характерны алгебраические методы: - измерение площадей и объёмов; - теорема Пифагора; - измерение круга и шара; - определение расстояний до недоступных предметов. Заключение На основании всего вышеизложенного можно сделать вывод о том, что развитие математики в древнем Китае со II в. до н.э. по VII в.н.э. дало сильный толчок для дальнейшего её соверш

Скачать
11313
1
5

... Е и множество и мы рассматриваем все его подмножества, то множество Е называется униварсельным. Пример: Если за Е взять множество книг то его подмножества: художественные книги, книги по математике, физики, физики … Если универсальное множество состоит из n элементов, то число подмножеств = 2n. Если , состоящее из элементов E, не принадлежащих А, называется дополненным. Множество можно задать: ...

0 комментариев


Наверх