2.1.8.1. Проценты
Слово «процент» происходит от латинских слов pro centum, что буквально означает «за сотню» или «со ста». Процентами очень удобно пользоваться на практике, так они выражают части целых чисел в одних и тех же сотых долях. Это дает возможность упрощать расчеты и легко сравнивать части между собой и с целым.
Проценты были особенно распространены в Древнем Риме. Римляне называли процентами деньги, которые платил должник заимодавцу за каждую сотню. От римлян проценты перешли к другим народам Европы.
Ныне процент – это частный вид десятичных дробей, сотая доля целого (принимаемого за единицу). В некоторых вопросах иногда применяют и более мелкие, тысячные доли, так называемые промилле (от латинского pro mille – «с тысячи»), обозначаемые ‰ по аналогии со знаком процента - %. Однако на практике в большинстве случаев «тысячные» - слишком мелкие доли, десятые же доли слишком крупные. Поэтому больше всего удобны сотые доли, иначе говоря, проценты.
В нашей стране ими пользуются при составлении и учете выполнения производственных планов в промышленности и сельском хозяйстве. при разных денежных расчетах.
Таким образом, исторически первым расширением понятия о числе является присоединение к множеству натуральных чисел множества всех дробных чисел.
2.2. Отрицательные числа
Обходиться только натуральными числами неудобно. Например, ими нельзя вычесть большее из меньшего. Для такого случая были введены отрицательные числа: китайцами – в Х в. до н. э., индийцами – в VII веке, европейцами – только в XIII веке.
2.2.1. Отрицательные числа в Древней Азии
Положительные количества в китайской математике называли «чен», отрицательные – «фу»; их изображали разными цветами: «чен» - красным, «фу» - черным. Такой способ изображения использовался в Китае до середины XII столетия, пока Ли Е не предложил более удобное обозначение отрицательных чисел – цифры, которые изображали отрицательные числа, перечеркивали черточкой наискось справа налево.
В V-VI столетиях отрицательные числа появляются и очень широко распространяются в индийской математике. В Индии отрицательные числа систематически использовали в основном так, как это мы делаем сейчас.
Уже в произведении выдающегося индийского математика и астронома Брахмагупты (598 – около 660 гг.) мы читаем: « имущество и имущество есть имущество, сумма двух долгов есть долг; сумма имущества и нуля есть имущество; сумма двух нулей есть нуль… Долг, который отнимают от нуля, становится имуществом, а имущество – долгом. Если нужно отнять имущество от долга, а долг от имущества, то берут их сумму».
Отрицательными числами индийские математики пользовались при решении уравнений, причем вычитание заменяли добавлением с равнопротивоположным числом.
Вместе с отрицательными числами индийские математики ввели понятие ноль, что позволило им создать десятеричную систему исчисления. Но долгое время ноль не признавали числом, «nullus» по- латыни – никакой, отсутствие числа. И лишь через X веков, в XVII-ом столетии с введением системы координат ноль становится числом.
2.2.2. Развитие идеи отрицательного количества в Европе
В Европе к идее отрицательного количества достаточно близко подошел в начале XIII столетия Леонардо Пизанский, однако в явном виде отрицательные числа применил впервые в конце XV столетия французский математик Шюке.
Современное обозначение положительных и отрицательных чисел со знаками « + » и « - » применил немецкий математик Видман, однако еще в ХVI столетии много математиков (например, Виет) не признавали отрицательных чисел.
Натуральные числа, противоположные им (отрицательные) числа и ноль называются целыми числами. Целые и дробные числа на 2-ом уровне обобщения получили общее название - рациональные числа. Их называли также относительными, потому что любое их них можно представить отношением двух целых чисел. Каждое рациональное число можно представить как бесконечную периодическую десятичную дробь.
С помощью рациональных чисел можно осуществлять различные измерения (например, длины отрезка при выбранной единице масштаба) с любой точностью. То есть совокупность рациональных чисел достаточна для удовлетворения большинства практических потребностей.
3. Действительные числа
3.1. Иррациональные числа
Еще в Древнем Египте и Вавилоне ХХ веков назад были известны так называемые несоизмеримые отрезки (, , π…), которые нельзя было выразить отношением, относительными, рациональными числами.
Точно не известно, исследование каких вопросов привело к открытию несоизмеримости. Это могло произойти:
в геометрических расчетах при нахождении общей меры стороны и диагонали квадрата;
Речь шла об отыскании и исследовании величины, которую мы теперь обозначаем . Открытие факта, что между двумя отрезками – стороной и диагональю квадрата – не существует общей меры, привело к настоящему кризису основ, по крайней мере, древнегреческой математики.
Индийцы рассматривали иррациональные числа как числа нового вида, но допускающие над ними такие же арифметические действия, как и над рациональными числами. Например, индийский математик Бхаскара уничтожает иррациональность в знаменателе, умножая числитель и знаменатель на тот же самый иррациональный множитель. У него мы встречаем выражения:
Развивая тригонометрию как самостоятельную научную дисциплину, азербайджанский ученый XIII столетия Насретдин ат-Туси (1201- 1274 гг.) трактует соотношение несоизмеримых величин как числа: «Каждое из этих соотношений может быть названо числом, которое измеряется единицей так же само, как один из членов соотношения обозначается другим из этих членов». Похожую трактовку числа давал и Омар Хайям.
В Европе существование геометрических несоизмеримых величин в средние века не оспаривалось, но для многих иррациональные числа были лишь символами, лишенными точно определенного содержания, поэтому их называли «глухими», «недействительными», «фиктивными» и т.д.
Только после появления геометрии Декарта (1637 г) началось применение иррациональных, как впрочем, и отрицательных чисел. Идеи Декарта привели к обобщению понятия о числе. Между точками прямой и числами было определено взаимно однозначное соответствие. В математику была введена переменная величина.
В начале XVIII столетия существовало три понятия иррационального числа:
иррациональное число рассматривали как корень n-ой степени из целого или дробного числа, когда результат извлечения корня нельзя выразить «точно» целым или дробным числом;
иррациональное числоиррациональнымПозднее Эйлер, Ламберт показали, что иррациональные числа можно представить бесконечными непериодическими десятичными дробями (например, π = 3,141592…).
Свое дальнейшее развитие теория иррациональных чисел получила во второй половине XIX века в трудах Дедекинда, Кантора и Вейерштрасе в связи с потребностями математического анализа.
Рациональные и иррациональные числа на 3-ем уровне обобщения образовали действительные числа.
... в мир кибернетики: понятие клеточного автомата и «универсального конструктора» (самовоспроизводящегося клеточного автомата). Результатом этих обманчиво простых мысленных экспериментов стало точное понятие самовоспроизведения, которое кибернетика приняла как основное понятие. Понятие, что те же самые свойства генетического воспроизводства относились к социальному миру, живым клеткам и даже ...
в и формальных систем является центральной в дисциплине. В настоящие время от нее возникли ответвления, например, разработка алгоритмических языков программирования.Одной из важнейших проблем в дискретной математики является проблема сложности вычислений.Теория сложности вычислений помогает оценить расход времени и памяти при решении задач на ЭВМ. Теория сложности позволяет выделить объективно ...
... как на вычислительную, для которой характерны алгебраические методы: - измерение площадей и объёмов; - теорема Пифагора; - измерение круга и шара; - определение расстояний до недоступных предметов. Заключение На основании всего вышеизложенного можно сделать вывод о том, что развитие математики в древнем Китае со II в. до н.э. по VII в.н.э. дало сильный толчок для дальнейшего её соверш
... Е и множество и мы рассматриваем все его подмножества, то множество Е называется униварсельным. Пример: Если за Е взять множество книг то его подмножества: художественные книги, книги по математике, физики, физики … Если универсальное множество состоит из n элементов, то число подмножеств = 2n. Если , состоящее из элементов E, не принадлежащих А, называется дополненным. Множество можно задать: ...
0 комментариев