3. Основные свойства интеграла

В этом параграфе мы установим ряд свойств интеграла от огра­ниченной измеримой функции.

Теорема 1. Если измеримая функция f(x) на измеримом мно­жестве Е удовлетворяет неравенствам a £ f(x) £ b, то

a× mE £ £ b× mE.

Это теорема обычно называется теоремой о среднем.

Доказательство. Пусть n натуральное число. Если мы положим

A = a - , B = b + ,

то окажется, что

A < f(x) < B,

и суммы Лебега можно будет составлять, дробя сегмент [А, В].

Но еслиA £ yk £ B, то, очевидно,

A£ £ B

или, что то же самое,

A× mE £ s £ B× mE,

откуда и в пределе

mE £ £ mE.

В силу произвольности числа n, теорема доказана.

Из этой теоремы вытекает несколько простых следствий.

Следствие 1. Если функция f(x) постоянна на измеримом множестве Е и f(x) = с, то

= c× mE.

Следствие 2. Если функция f(x) не отрицательна (не положи­тельна), то таков же и ее интеграл.

Следствие 3. Если тЕ = 0, то для любой ограниченной функ­ции f(x), заданной на множестве Е, будет

= 0.

Теорема 2. Пусть на измеримом множестве Е задана изме­римая ограниченная функция f(x). Если множество Е есть сумма конечного числа или счетного множества попарно не пересекаю­щихся измеримых множеств

E = (Ek= 0, k ¹ k),

то

=

Свойство интеграла, выражаемое этой теоремой, называется его полной аддитивностью.

Доказательство. Рассмотрим сначала простейший случай, когда число слагаемых равно двум

Е = +  (= 0).

Если на множестве Е

A < f(x) < B

и мы, раздробив сегмент [А, В] точками у0, y1,¼ , уn, составим множества

ek = E(yk £ f < yk+1),

ek= E’(yk £ f < yk+1),

ek’’= E’’(yk £ f < yk+1),

то, очевидно, будем иметь

ek = ek + ek’’ (ekek’’ = 0),

откуда

=+

н в пределе, при l ® 0,

 =  +

Итак, теорема доказана для случая двух слагаемых множеств. Пользуясь методом математической индукции, мы легко распространим теорему на случай любого конечного числа слагаемых множеств.

Остается рассмотреть случай, когда

E = .

В этом случае

 = mE,

так что при n ® ¥ будет

® 0. (*)

Заметив это, положим

= Rn.

Так как для конечного числа слагаемых множеств теорема уже дока­зана, то

 = + .

В силу теоремы о среднем

A× mRn £  £ B× mRn,

а в силу (*) мера mRn множества Rn стремится к нулю с возраста­нием n, откуда ясно, что

® 0.

Но это и означает, что

=

Из этой теоремы вытекает ряд следствий.

Следствие 1. Если измеримые ограниченные функции f(x) и g(x), заданные на множестве Е, эквивалентны между собой, то

=.

Действительно, если

А = Е(f ¹ g), B = E(f = g),

то mA = 0 и

 =  = 0.

На множестве же В обе функции тождественны и

 = .

Остается сложить это равенство с предыдущим.

В частности, интеграл от функции, эквивалентной нулю, равен нулю.

Само собою разумеется, что последнее утверждение необратимо. Например, если f(x) задана на сегменте [-1, +1], так:


Информация о работе «Интеграл Лебега»
Раздел: Математика
Количество знаков с пробелами: 29630
Количество таблиц: 0
Количество изображений: 2

Похожие работы

Скачать
57792
0
12

... 2.6 Приведение интеграла Стилтьеса к интегралу Римана Пусть функция  непрерывна в промежутке , а  монотонно возрастает в этом промежутке, и притом в строгом смысле. Тогда, как показал Лебег, интеграл Стилтьеса  с помощью подстановки  непосредственно приводится к интегралу Римана. На рисунке изображен график функции . Для тех значений , при которых функция  испытывает скачок (ибо мы вовсе ...

Скачать
19979
0
3

... функции стремятся к нулю при . Если соотношение (7) имеет место для всякой суммируемой на [a, b] функции f (t), то мы будем говорить, что последовательность  слабо сходится к нулю. §2. Представление функции сингулярным интегралом в заданной точке Во всем дальнейшем будем считать, что ядро  при фиксированных n и x ограничено. Тогда сингулярный интеграл  имеет смысл при любой ...

Скачать
52686
0
17

... и в том случае, когда интегральный оператор (3) действует в пространстве C(W) и неразложим в этом пространстве относительно конуса неотрицательных функций пространства C(W). Получению оценок спектрального радиуса положительного оператора по информации о поведении этого оператора на фиксированном ненулевом элементе конуса  посвящена достаточно обширная литература [21], [11], [13], [18], [26], ...

Скачать
22026
0
3

... интегралы всех разрывных функций, которые можно было построить известными в то время методами (интеграл Лебега). Триумф идей Лебега привел к тому, что даже один из вождей математиков – классиков Гастон Дарбу изменил свое мнение и, выступая в 1908г. на Математическом конгрессе в Риме, говорил о пламенном и пытливом духе математики ХХ в., о науке, ведущей свои изыскания в абсолютно новой области с ...

0 комментариев


Наверх