9 Гомоморфизм.
Гомоморфизм групп - это естественное обобщение понятия изоморфизма.
Определение.
Отображение
групп называется
гомоморфизмом,
если оно сохраняет
алгебраическую
операцию, то
есть
:
.
Таким образом, обобщение состоит в том, что вместо взаимно однозначных отображений, которые участвуют в определении изоморфизма, здесь допускаются любые отображения.
Примеры.
Разумеется, всякий изоморфизм является гомоморфизмом.
Тривиальное отображение является гомоморфизмом.
Если - любая подгруппа, то отображение вложения
будет инъективным гомоморфизмом.
Пусть - нормальная подгруппа. Отображение
группы G на факторгруппу G/H будет гомоморфизмом поскольку
. Этот сюръективный гомоморфизм называется естественным.
По теореме С предыдущего раздела отображение сопряжения сохраняет операцию и, следовательно является гомоморфизмом.
Отображение , которое каждому перемещению
n- мерного пространства ставит в соответствие ортогональный оператор
(см. лекцию №3) является гомоморфизмом поскольку по теореме 4 той же лекции
.
Теорема (свойства гомоморфизма)
Пусть
-
гомоморфизм
групп,
и
-
подгруппы.
Тогда:
,
.
- подгруппа.
-подгруппа, причем нормальная, если таковой была
.
Доказательство.
и по признаку нейтрального элемента
. Теперь имеем:
.
Пусть p = a(h) , q = a(k) . Тогда и
. По признаку подгруппы получаем 2.
Пусть то есть элементы p = a(h) , q = a(k) входят в
. Тогда
то есть
. Пусть теперь подгруппа
нормальна и
- любой элемент.
и потому
.
Определение.
Нормальная
подгруппа
называется
ядром гомоморфизма
.Образ
этого гомоморфизма
обозначается
.
Теорема.
Гомоморфизм
a инъективен
тогда и только
тогда, когда
Доказательство.
Поскольку
,
указанное
условие необходимо.
С другой стороны,
если
,
то
и если ядро
тривиально,
и отображение
инъективно.
Понятие гомоморфизма тесно связано с понятием факторгруппы.
Теорема о гомоморфизме.
Любой
гомоморфизм
можно представить
как композицию
естественного
(сюръективного)
гомоморфизма
,
изоморфизма
и (инъективного)
гомоморфизма
(вложения подгруппы
в группу):
.
Доказательство.
Гомоморфизмы
p и
i описаны
выше (см. примеры)
Построим изоморфизм
j. Пусть
.
Элементами
факторгруппы
являются смежные
классы Hg
. Все элементы
имеют одинаковые
образы при
отображении
a :
.
Поэтому формула
определяет
однозначное
отображение
.
Проверим сохранение
операции
.Поскольку
отображение
j очевидно
сюръективно,
остается проверить
его инъективность.
Если
,
то
и потому
.
Следовательно,
и по предыдущей
теореме j
инъективно.
Пусть
- любой элемент.
Имеем :
.
Следовательно,
.
ывает канонический вид произвольных линейных преобразований, а именно: 1) нормальную форму линейного преобразования; 2) применение произвольного преобразования к нормальной форме: а) собственные и присоединенные векторы линейного преобразования; b) выделение подпространства, в котором преобразование А имеет только одно собственное значение; с) приведение к нормальной форме ...
... гомоморфизм . K= - подгруппа Z и значит K=mZ для некоторого целого m. Отсюда следует, что H= . При этом и потому n=dm где d - целое. По теореме о гомоморфизме . Из доказанных теорем следует, что всякая подгруппа циклической группы циклична. Мы видим также, что для каждого целого d, делящего порядок n конечной циклической группы имеется и притом ровно одна подгруппа порядка d, то есть для ...
... так как ему отвечает (однозначно определенная !) обратная матрица. 5. Действия над комплексными числами, записанными в алгебраической форме производятся по обычным правилам алгебры с учетом того, что . Таким образом, (a + bi)(c + di) = (ac-bd) + (ad - bc)i . Действия над кватернионами, записанными в виде z + wj производятся по обычным правилам алгебры ...
... лучей, исходящих из одной точки, называется многогранным выпуклым конусом с вершиной в данной точке. 1.4 Математические основы решения задачи линейного программирования графическим способом 1.4.1 Математический аппарат Для понимания всего дальнейшего полезно знать и представлять себе геометрическую интерпретацию задач линейного программирования, которую можно дать для случаев n = 2 и n = ...
0 комментариев