2.2.2. Алгоритм Евклида
Вычислим - остаток от деления числа на , , .
Если , то есть искомое число.
Если , то заменим пару чисел парой и перейдем к
шагу 1.
Теорема 1. При вычислении наибольшего общего делителя с помощью алгоритма Евклида будет выполнено не более операций деления с остатком, где есть количество цифр в десятичной записи меньшего из чисел и .
Доказательство. Положим и определим - последовательность делителей, появляющихся в процессе выполнения шага 1 алгоритма Евклида. Тогда
.
Пусть также , , , , - последовательность Фибоначчи. Индукцией по от до легко доказывается неравенство . А так как , то имеем неравенства и .
Немного подправив алгоритм Евклида, можно достаточно быстро решать сравнения при условии, что . Эта задача равносильна поиску целых решений уравнения .
2.2.3. Алгоритм решения уравнения
0) Определим матрицу .
1) Вычислим - остаток от деления числа на , , .
Если , то второй столбец матрицы даёт вектор
решений уравнения.
Если , то заменим матрицу матрицей .
Заменим пару чисел парой и перейдем к шагу 1.
Если обозначить через матрицу , возникающую в процессе работы алгоритма перед шагом 2 после делений с остатком (шаг 1), то в обозначениях из доказательства теоремы 1 в этот момент выполняется векторное равенство . Поскольку числа и взаимно просты, имеем , и это доказывает, что алгоритм действительно даёт решение уравнения . Буквой мы обозначили количество делений с остатком, которое в точности такое же, как и в алгоритме Евклида.
Три приведённых выше алгоритма относятся к разряду так называемых полиномиальных алгоритмов. Это название носят алгоритмы, сложность которых оценивается сверху степенным образом в зависимости от длины записи входящих чисел. Если наибольшее из чисел, подаваемых на вход алгоритма, не превосходит , то сложность алгоритмов этого типа оценивается величиной , где - некоторая абсолютная постоянная. Во всех приведённых выше примерах .
Полиномиальные алгоритмы в теории чисел - большая редкость. Да и опенки сложности алгоритмов чаше всего опираются на какие-либо не доказанные, но правдоподобные гипотезы, обычно относящиеся к аналитической теории чисел.
Для некоторых задач эффективные алгоритмы вообще не известны. Иногда в таких случаях все же можно предложить последовательность действий, которая, «если повезет», быстро приводит к требуемому результату. Существует класс так называемых вероятностных алгоритмов, которые дают правильный результат, но имеют вероятностную опенку времени работы. Обычно работа этих алгоритмов зависит от одного или нескольких параметров. В худшем случае они работают достаточно долго. Но удачный выбор параметра определяет быстрое завершение работы. Такие алгоритмы, если множество «хороших» значений параметров велико, на практике работают достаточно эффективно, хотя и не имеют хороших опенок сложности.
Мы будем иногда использовать слова детерминированный алгоритм, чтобы отличать алгоритмы в обычном смысле от вероятностных алгоритмов.
Как пример, рассмотрим вероятностный алгоритм, позволяющий эффективно находить решения полиномиальных сравнений по простому модулю. Пусть — простое число, которое предполагается большим, и - многочлен, степень которого предполагается ограниченной. Задача состоит в отыскании решений сравнения
. (8)
Например, речь может идти о решении квадратичных сравнений, если степень многочлена равна 2. Другими словами, мы должны отыскать в поле все элементы, удовлетворяющие уравнению .
Согласно малой теореме Ферма, все элементы поля являются однократными корнями многочлена . Поэтому, вычислив наибольший общий делитель , мы найдем многочлен , множество корней которого в поле совпадает с множеством корней многочлена , причем все эти корни однократны. Если окажется, что многочлен имеет нулевую степень, т. е. лежит в поле , это будет означать, что сравнение (8) не имеет решений.
Для вычисления многочлена удобно сначала вычислить многочлен , пользуясь алгоритмом, подобным описанному выше алгоритму возведения в степень (напомним, что число предполагается большим). А затем с помощью аналога алгоритма Евклида вычислить . Всё это выполняется за полиномиальное количество арифметических операций.
Таким образом, обсуждая далее задачу нахождения решений сравнения (8), мы можем предполагать, что в кольце многочленов справедливо равенство
2.2.4. Алгоритм нахождения делителей многочлена в кольце
1) Выберем каким-либо способом элемент .
Вычислим наибольший общий делитель .
Если многочлен окажется собственным делителем , то многочлен распадётся на два множителя и с каждым из них независимо нужно будет проделать все операции, предписываемые настоящим алгоритмом для многочлена .
4) Если окажется, что или , следует перейти к шагу 1 и. выбрав новое значение , продолжить выполнение алгоритма.
Количество операций на шаге 2 оценивается величиной , если вычисления проводить так, как это указывалось выше при нахождении . Выясним теперь, сколь долго придётся выбирать числа , пока на шаге 2 не будет найден собственный делитель .
Количество решений уравнения в поле не превосходит . Это означает, что подмножество элементов , удовлетворяющих условиям
,
состоит не менее, чем из элементов. Учитывая теперь, что каждый ненулевой элемент удовлетворяет одному из равенств , либо , заключаем, что для одно из чисел будет корнем многочлена , а другое - нет. Для таких элементов многочлен , определённый на шаге 2 алгоритма, будет собственным делителем многочлена .
Итак, существует не менее «удачных» выборов элемента , при которых на шаге 2 алгоритма многочлен распадётся на два собственных множителя. Следовательно, при «случайном» выборе элемента , вероятность того, что многочлен не разложится на множители после повторений шагов алгоритма 1-4. не превосходит . Вероятность с ростом убывает очень быстро. И действительно, на практике этот алгоритм работает достаточно эффективно.
Заметим, что при опенке вероятности мы использовали только два корня многочлена . При эта вероятность, конечно, еще меньше. Более тонкий анализ с использованием опенок А. Вейля для сумм характеров показывает, что вероятность для многочлена не распасться на множители при однократном проходе шагов алгоритма 1-4. не превосходит . Здесь постоянная в зависит от .
Если в сравнении (8) заменить простой модуль составным модулем , то задача нахождения решений соответствующего сравнения становится намного более сложной. Известные алгоритмы её решения основаны на сведении сравнения к совокупности сравнений (8) по простым модулям — делителям , и. следовательно, они требуют разложения числа то на простые сомножители, что, как уже указывалось, является достаточно трудоемкой задачей.
... в тайне. Исходный текст шифруется открытым ключом адресата и передается ему. Зашифрованный текст в принципе не может быть расшифрован тем же открытым ключом. Дешифрование сообщение возможно только с использованием закрытого ключа, который известен только самому адресату. Криптографические системы с открытым ключом используют так называемые необратимые или ...
... . Так как система с открытыми ключами позволяет распределять ключи и в симметричных системах, можно объединить в системе передачи защищенной информации асимметричный и симметричный алгоритмы шифрования. С помощью первого рассылать ключи, вторым же - собственно шифровать передаваемую информацию Обмен информацией можно осуществлять следующим образом: · получатель вычисляет открытый и ...
... схема устройства для аппаратного шифрования информации, которая соответствует приведенным выше требованиям, изображена на рисунке 1.9. Рис. 1.9 – Структурная схема устройства аппаратного шифрования 2. РАЗРАБОТКА СХЕМОТЕХНИЧЕСКОЙ РЕАЛИЗАЦИИ АППАРАТНОГО ШИФРАТОРА 2.1 Выбор элементной базы для шифратора Согласно техническому заданию, элементная база для аппаратного шифратора должна ...
... не к ключам!) и поэтому может зашифровывать и дешифровывать любую информацию; 2.7 Выводы по разделу 2. Подводя итоги вышесказанного, можно уверенно заявить, что криптографическими системами защиты называються совокупность различных методов и средств, благодаря которым исходная информация кодируеться, передаеться и расшифровываеться. Существуют различные криптографические системы защиты, ...
0 комментариев