2.1. Конечное расширение поля.

 

Пусть P — подполе поля F. Тогда мы можем рассматривать F как векторное пространство над P, т. е. рассматривать векторное пространство +F, +, {wl½l P},,

где wl- операция умножения элементов из F на скаляр lP.

Определение. Расширение F поля P называется конечным, если F, как векторное пространство над P, имеет конечную размерность. Эта размерность обозначается через [F : P].

Предложение 2.1. Если a — алгебраический элемент степени n над P, то [P (a):P]=n.

Это предложение непосредственно следует из теоремы 1.5.

Определение. Расширение F поля P называется алгебраическим, если каждый элемент из F является алгебра­ическим над P.

Теорема 2.2. Любое конечное расширение F поля P является алгебраическим над P.

Доказательство. Пусть n-размерность F над P. Теорема, очевидно, верна, если n = 0. Предположим, что n>0. Любые n+1 элементов из F линейно зависимы над P. В частности, линейно зависима система элементов 1, a, ..., an, т. е. существуют в P такие элементы с0, с1,…,cn не все равные нулю, что с0×1+ с1a+…+cn an= 0.

Следовательно, элемент a является алгебраическим над P.

Отметим, что существуют алгебраические расширения поля, не являющиеся конечными расширениями.

2.2. Составное алгебраическое расширение поля.

 

Расширение F поля P называется составным, если существует

возрастающая цепочка подполей L i поля F такая, что

P = L0 L1 … Lk= F и k>1.

Теорема 2.3. Пусть F — конечное расширение поля L и L — конечное расширение поля P. Тогда F является конечным расширением поля P и

(I)        [F : P] = [F : L]@[ L : P].

Доказательство. Пусть

(1) a1,…,am — базис поля L над P (как векторного пространства) и

(2) b1,…,bn— базис поля F над L . Любой элемент d из F можно линейно выразить через базис:

(3) d = l1b1+...+lnbn (lk L).

Коэффициенты 1k можно линейно выразить через базис (1):

(4) lk = p1k a +…+ pmk am (pikP).

Подставляя выражения для коэффициентов lk в (3), получаем

d = å pik aibk.

i{1,…,m}

k{1,…,n}

Таким образом, каждый элемент поля F представим в виде линейной комбинации элементов множества B, где

B = { a ibk½{1,..., m}, k {l,..., n}}.

Отметим, что множество B состоит из nm элементов.

Покажем, что B есть базис F над полем P. Нам надо показать, что система элементов множества B линейно независима. Пусть

(5) åcikaibk = 0,

I,k

где cik P. Так как система (2) линейно независима над L , то из (5) следуют равенства

(6) с1ka 1+...+сmkam = 0 (k = 1,..., n).

Поскольку элементы a 1, ..., am линейно независимы над P, то из (6) следуют равенства

c1k = 0,…,cmk = 0 (k = 1, ..., n),

показывающие, что все коэффициенты в (5) равны нулю. Таким образом, система элементов B линейно независима и является базисом F над P.

Итак установлено, что [F , P] = nm = [F: L]×[L: P]. Следовательно, F является конечным расширением поля P и имеет место формула (I).

Определение. Расширение F поля P называется составным алгебраическим, если существует возрастающая цепочка подполей поля P

P = L0 L1 … Lk= F и k>1 (1)

такая, что при i = 1,..., k поле L i является простым алгебраическим расширением поля L i-1.Число k назы­вается длиной цепочки (1).

Следствие 2.4. Составное алгебраическое расшире­ние F поля P является конечным расширением поля P.

Доказательство легко проводится индукцией по длине цепочки (1) на основании теоремы 2.3.

Теорема 2.5. Пусть a1,..., ak — алгебраические над полем P элементы поля F . Тогда поле P(a1,..., ak) является конечным расширением поля P.

Доказательство. Пусть

L0 = P, L1 = P [a1], L 2= P [a1, a2,],..., L k = P [a1 ,..., ak].

Тогда L1 = P [a1] есть простое алгебраическое расшире­ние поля L0; L2 есть простое алгебраическое расширение поля L1 , так как

L2 = P [a1,a2] = (P [a1])[a2] = L1[a2] = L1(a2) и т. д.

Таким образом,

P = L0 L1 … Lk= F

где Li = Li-1(ai) при i = 1, ..., k, т. е. каждый член цепочки (2) является простым алгебраическим расширением предшествующего члена цепочки. Итак, поле F является составным алгебраическим расширением поля P. Следовательно, в силу следствия 2.4 поле F является конеч­ным расширением поля P .

Следствие 2.6. Составное алгебраическое расшире­ние поля является алгебраическим расширением этого поля.


Информация о работе «Расширения полей»
Раздел: Математика
Количество знаков с пробелами: 48484
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
47548
0
0

... множители. Это условие является и достаточным. Действительно, если каждый многочлен в W[x] разлагается на линейные множители, то все простые многочлены в W[x] линейны и каждый элемент любого алгебраического расширения W' поля W оказывается корнем некоторого линейного многочлена x — a в W[x], т. е. совпадает с некоторым элементом a поля W. Поэтому дадим следующее определение: Поле W называется ...

Скачать
16021
0
3

... Р – подполуполе полуполя F, , тогда простым расширением полуполя P с помощью элемента a называется наименьшее подполуполе полуполя F, содержащее множество P и элемент a. Простое расширение P с помощью a обозначается P(a). 1.2. Простое расширение Q+(a) Теорема 1.2.1. Произвольное полутело либо аддитивно идемпотентно, либо содержит копию Q+ в качестве полутела. Доказательство. Предположим, что S ...

Скачать
23315
0
0

... -- отмечая, как каждая из них организует наше внимание. Первые три хорошо известны людям, изучающим сознание. И их можно просто называть первой, второй и третьей позициями. Начнем исследовать расширение позиций восприятия с принятия первой позиции, ощущения вашего текущего взгляда на мир "изнутри". Это -- знакомая территория. В любой момент я могу посмотреть изнутри на другого, сидящего напротив ...

Скачать
7823
0
3

... IrrPoly->print(); // Вывожу  Memo1->Lines->Add("");  Polynom *prim = FindPrimitiveElement(IrrPoly); // Находим примитивный элемент поля  LabeledEdit2->Text = prim->print(); Результаты выполнения программы: Фундаментальная группа Цель работы: изучить определение и свойства фундаментальной группы топологического пространства. Познакомиться с понятием клеточного комплекса ...

0 комментариев


Наверх