1. Степень функции h — f(х)/g(х) зависит лишь от полей D(h) и D(x), а не от того или иного выбора порождающего элемента х.
2. Равенство Д (h) = D(х) имеет место тогда и только тогда, когда h имеет степень 1, т. е. является дробно-линейной функцией. Это означает: порождающим элементом поля, кроме элемента х, может служить любая дробно-линейная функция от x и только такая функция.
3. Любой автоморфизм поля D(х), оставляющий на месте каждый элемент поля D, должен переводить элемент x в какой-либо порождающий элемент поля. Обратно, если х переводится в какой-либо порождающий элемент х = (ax+b)/(cx+d) и каждая функция j(х) — в функцию j(х), то получается автоморфизм, при котором все элементы из D остаются на месте. Следовательно,
Все автоморфизмы поля D(x) над полем D являются дробно-линейными подстановками
x = (ax+b)/(cx+d), ad – bc ¹ 0.
Важной для некоторых геометрических исследований являетсяТеорема Люрота. Каждое промежуточное поле S, для которого DÌSÍD(x), является простым трансцендентным расширением: S = D(q).
Доказательство. Элемент х должен быть алгебраическим над S, потому что если h — любой элемент из S не принадлежащий полю D, то, как было показано, элемент х является алгебраическим над D(h) и тем более алгебраическим над S. Пусть неразложимый в кольце многочленов S[z] многочлен со старшим коэффициентом 1 и корнем x имеет вид
f0(z) = zn+a1zn-1+…+an. (1)
Выясним строение этого многочлена.
Элементы ai являются рациональными функциями от x. С помощью умножения на общий знаменатель их можно сделать целыми рациональными функциями и, кроме того, получить многочлен относительно x с содержанием 1:
f( x, z) =b0(x)zn+b1 (x)zn-1+…+bn(x).
Степень этого многочлена по х обозначим через т, а по z — через п.
Коэффициенты ai= bi/ b0 из (1) не могут все быть независимыми от х, так как иначе х оказался бы алгебраическим элементом над D; поэтому один из них, скажем,
q = ai = bi(x)/ b0(x),
должен фактически зависеть от х; запишем его в несократимом виде:
q = g(x)/h(x)
Степени многочленов g(х) и h(х) не превосходят т. Многочлен
g(z) - qh(z) = g(z) – (g(x)/h(x))h(z)
(не являющийся тождественным нулем) имеет корень z = x, а потому он делится на f 0(z) в кольце S[z]. Если перейти от этих рациональных по х многочленов к целым по х многочленам с содержанием 1, то отношение делимости сохранится, и мы получим
h(x)g(z)-g(x)h(z) = q(x, z)f(x, z).
Левая часть в этом равенстве имеет степень по х, не превосходящую т. Но справа уже многочлен f имеет степень т; следовательно, степень левой части в точности равна т и q(х, z) не зависит от х. Однако зависящий лишь от z множитель не может делить левую часть (см. выше); поэтому q(х, z) является константой:
h(x)g(z)-g(x)h(z) = qf(x, z).
Так как присутствие константы q роли не играет, строение многочлена f(х, z) описано полностью. Степень многочлена f(х, z) по х равна т следовательно (по соображениям симметрии), и степень по z равна т, так что m = п. По меньшей мере одна из степеней многочленов g(x) и h(х) должна фактически достигать значения m, следовательно, и функция q должна иметь степень т по х.
Тем самым, так как с одной стороны установлено равенство
(D(х):D(q)) = т,
а с другой — равенство
(D(x):S) = m;
то, поскольку S содержит D(q),
(S: D(q)) =1,
S = D(q).
Заключение.
В данной курсовой работе рассмотрены основные алгебраические расширения полей, во-первых, ввиду той фундаментальной роли, которую поля играют в современной математике, во-вторых, ввиду относительной простоты этого понятия.
В курсовой работе были рассмотрены следующие виды расширений числового поля P:
Ø Простое алгебраическое расширение поля.
Ø Составное алгебраическое расширение поля.
Ø Сепарабельные и несепарабельные расширения.
Ø Бесконечные расширения полей.
Анализируя работу можно сделать некоторые выводы.
Из рассмотренных в первых двух частях расширений, таких как:
1) простые алгебраические расширения;
2) конечные расширения;
3) составные алгебраические расширения.
Следует, что все эти виды расширений совпадают и, в частности, исчерпываются простыми алгебраическими расширениями поля P.
Литература
1. Л.Я. Куликов. Алгебра и теория чисел.— М.: Высш. Школа,1979.—528-538с.
2. Б.Л. Ван-дер-Варден. Алгебра.— М.,1976 — 138-151с.,158-167с.,244-253с.
3. Э.Ф. Шмигирев, С.В. Игнатович. Теория многочленов.— Мозырь 2002.
... множители. Это условие является и достаточным. Действительно, если каждый многочлен в W[x] разлагается на линейные множители, то все простые многочлены в W[x] линейны и каждый элемент любого алгебраического расширения W' поля W оказывается корнем некоторого линейного многочлена x — a в W[x], т. е. совпадает с некоторым элементом a поля W. Поэтому дадим следующее определение: Поле W называется ...
... Р – подполуполе полуполя F, , тогда простым расширением полуполя P с помощью элемента a называется наименьшее подполуполе полуполя F, содержащее множество P и элемент a. Простое расширение P с помощью a обозначается P(a). 1.2. Простое расширение Q+(a) Теорема 1.2.1. Произвольное полутело либо аддитивно идемпотентно, либо содержит копию Q+ в качестве полутела. Доказательство. Предположим, что S ...
... -- отмечая, как каждая из них организует наше внимание. Первые три хорошо известны людям, изучающим сознание. И их можно просто называть первой, второй и третьей позициями. Начнем исследовать расширение позиций восприятия с принятия первой позиции, ощущения вашего текущего взгляда на мир "изнутри". Это -- знакомая территория. В любой момент я могу посмотреть изнутри на другого, сидящего напротив ...
... IrrPoly->print(); // Вывожу Memo1->Lines->Add(""); Polynom *prim = FindPrimitiveElement(IrrPoly); // Находим примитивный элемент поля LabeledEdit2->Text = prim->print(); Результаты выполнения программы: Фундаментальная группа Цель работы: изучить определение и свойства фундаментальной группы топологического пространства. Познакомиться с понятием клеточного комплекса ...
0 комментариев