4.3. ПОСТРОЕНИЕ ИСКУССТВЕННОГО БАЗИСА

 

Методы искусственного базиса предназначены для построения начального базиса (т.е. для получения начального решения) в случаях, когда его построение непосредственно на основе стандартной формы невозможно. При использовании искусственного базиса начальное решение оказывается недопустимым; от него по определенным алгоритмам выполняется переход к начальному допустимому решению.

Для того, чтобы построить искусственный базис, необходимо в каждое уравнение стандартной формы, не содержащее базисных переменных (т.е. полученное из ограничения-равенства или "не меньше"), добавить по одной искусственной переменной. В нашем случае это:

2X1 – X2 + 6X4 – 3X5 + Х9 = 0;

2X1 – 2X3 + 6X4 – 2X6 + Х10 =0.

где Х9 и Х10 – искусственные переменные, не имеющие никакого физического смысла, причем Х9 , Х10 ≥0.

После построения искусственного базиса, придав нулевые значения всем переменным, кроме базисных, получим начальный базис: Х7 , Х8 , Х9 , Х10 . Всего в базисе имеется четыре переменные и их значения равны правым частям ограничений, т.е.:

Х7 = 8;

Х8 = 8;

Х9 = 0;

Х10 = 0.

Теперь необходимо решить эту задачу, т.е. найти оптимальное допустимое решение. Для этого воспользуемся двухэтапным симплекс-методом.

4.4. ПЕРВЫЙ ЭТАП ДВУХЭТАПНОГО СИМПЛЕКС-МЕТОДА

 

Итак, на первом этапе двухэтапного метода отыскивается начальное допустимое решение. Для этого выполним следующие действия:

1.    Строим искусственную целевую функцию – сумму всех искусственных

переменных:

W = X9 + X10 Þ min

2.    Так как целевая функция должна быть выражена только через небазисные

переменные, то выражаем искусственные переменные X9 и X10 через небазисные переменные, а затем, упростив полученное выражение, переписываем искусственную целевую функцию:

X9 = - 2X1 + X2 - 6X4 + 3X5;

X10 = - 2X1 + 2X3 - 6X4 + 2X6.

W = - 4X1 + X2 + 2X3 – 12X4 + 3X5 + 2X6 Þ min

3.    Для приведения к стандартной форме направим искусственную целевую

функцию на максимум, для этого умножим обе ее части на –1:

 -W = 4X1 - X2 - 2X3 + 12X4 - 3X5 - 2X6 Þ max

4.    Определяем начальное, недопустимое решение. Базис состоит из четырех

переменных, из них две искусственные, остальные две - остаточные. Базисные переменные принимают значения, равные ограничениям задачи. Остальные переменные считаем равными нулю. В этом случае целевая функция Е принимает значение 0, искусственная целевая функция –W также принимает значение 0.

5.   Составляем исходную симплекс-таблицу:

БП

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

БР

E

-1 -1 -2 -3 -3 -2 0 0 0 0 0

-W

-4 1 2 -12 3 2 0 0 0 0 0

X7

1 1 1 0 0 0 1 0 0 0 8

X8

0 0 0 1 1 1 0 1 0 0 8

X9

2 -1 0

6

-3 0 0 0 1 0 0

X10

2 0 -2 6 0 -2 0 0 0 1 0

Таблица 2. Симплекс-таблица №1.

Итак, в первом столбце таблицы указаны базисные переменные, в последнем столбце - их значения, а так же значения целевой и искусственной целевой функций. В заголовке таблицы перечисляются все используемые переменные. В строках таблицы указываются коэффициенты ограничений задачи.


Информация о работе «Решение оптимизационной задачи линейного программирования»
Раздел: Математика
Количество знаков с пробелами: 59893
Количество таблиц: 13
Количество изображений: 0

Похожие работы

Скачать
62893
11
17

... . При этом значения cij соответствуют коэффициентам целевой функции исходной замкнутой транспортной задачи (1) и в последующем не изменяются. Элементы xij соответствуют значениям переменных промежуточных решений транспортной задачи линейного программирования и изменяются на каждой итерации алгоритма. Если в некоторой ячейке xij=0, то такая ячейка называется свободной, если же xij>0, то такая ...

Скачать
34424
6
3

... задачи линейного программирования, они очень сложны и решаются специальными, обычно многостадийными приемами с использованием эвристических элементов. 3. Решение задач   3.1. Решение задачи линейного программирования   3.1.1.Постановка задачи Сформулируем задачу: Определить значения переменных, обеспечивающие минимизацию целевой функции. Составим целевую функцию и зададим ограничения. ...

Скачать
15809
4
17

... имеет вид найти переменные задачи  удовлетворяющие системе ограничений:   и условию неотрицательности   0 (j = ), которая обеспечивает экстремум целевой функции Z(Y) =   Допустимым решением задачи линейного программирования называется любой набор значений переменных удовлетворяющий системе ограничений и условной неотрицательности. Множество допустимых решений образует область допустимых ...

Скачать
82416
8
19

... 0 505/103 0 792/103 669/103 500/103 Анализ Таблицы 6 позволяет сделать вывод о допустимости и оптимальности базиса XБ4=(x5, x7, x1, x2, x4)T. 3.4 Результат решения задачи планирования производства В результате решения поставленной задачи симплекс-методом получили набор производимой продукции x=(x1, x2, x3, x4, x5)=( 15145/103, 8910/103, 0, 1250/103, 3255/103), который удовлетворяет всем ...

0 комментариев


Наверх