15. Множество достижи­мости и его свойства.

Рассматриваем динамический объект, поведение которого описывается системой (1) , x- n-мерный вектор, , A-матрица nxn, u имеет ту же размерность, что и , .Задано , u: I и полагается, что u(t) измеримо и - где k(t) скалярная функция интегрируемая по Лебегу на отрезке I .Функция u(t)- называется допустимым управлением, если измерима и является однозначной ветвью (2) u(t)U(t)- ограничения на управления . В фазовом пространстве заданы два не пустых множества. Допустимое управление u(t) на отр.I осуществляете переход из начального мн-ва в конечное множество , если существует решение уравнения (1), удовлетворяющее граничным условиям (4) и . Цель управления- перевод динамический объекта из в , а качество определяет функционал. Таким функционалом явл. время, следовательно

задача быстродействия заключается в нахождении такого допустимого управления, которое осуществляет переход из множества в за наименьшее время. (4).

Введем понятия мн-ва достижимости: -это множество все точек фазового пространства , в котором можно перейти на отр. из начального множества по решениям (1) при всех допустимых значениях управления u(t) в момент времени .

Рассмотрим свойства множества достижимости:

1) Используем формулу Коши:, -интеграл от многозначного отображения. Доказательство непосредственно подстав­ле­нием в уравн (1).

2) Множество достижимости является не пустым, компактным подмножеством пр-ва . .

Доказательство следует из формулы Коши и 1-ой теоремы для интеграла многозначных отображений.

3) Если начальное множество выпукло, то множество достижимости также выпукло. Доказательство следует из формулы и теоремы о выпуклости интеграла от многозначного отображения.

4) Опорная функция множества достижимости имеет вид: , u(s)=U. Доказательство следует из формулы , свойств (3), (4) опорных функций , теоремы 2 и того факта, что .

Доказательство:

.

5) Мн-во достижимости: : Iнепрерывно зависит от аргумента . Множество достижимости имеет вид : -непрерывна по теореме 3, матрица также непрерывна по , следовательно линейное отображение непрерывная функция.

Пример: Найти мн-во достижимости для управляемого объекта, описываемого уравнением:.

, и , I.

,, , , , . , .



Информация о работе «Теория управления»
Раздел: Математика
Количество знаков с пробелами: 25233
Количество таблиц: 1
Количество изображений: 627

Похожие работы

Скачать
795696
13
12

... за собой её гибель, либо требующие подключения к процессу самоуправления суперсистемы иерархически высшего управления. Так соборный интеллект видится индивидуальному интеллекту с точки зрения достаточно общей теории управления; возможно, что кому-то всё это, высказанное о соборных интеллектах, представляется бредом, но обратитесь тогда к любому специалисту по вычислительной технике: примитивная ...

Скачать
65851
0
2

... важности человеческого фактора; использовании интеллектуального потенциала; преобладании психологических социальных факторов и групповых норм поведения. Начиная с 70-х годов, стала развиваться ситуационная теория управления. Ее главной особенностью является стремление к достижению согласованности между организационной и поведенческой сторонами управления в зависимости от характера производства и ...

Скачать
14050
0
0

... эффективность инвестиций в рекламу? Желая получить ответ на возникший вопрос, руководитель попадает в одну из двух ловушек: утверждается в бесполезности теории управления для решения его практической задачи; находит простое и, естественно, неправильное решение, после чего либо попадает в первую ловушку, либо продолжает поиск волшебных таблеток. Кроме того, многие руководители не хотят ...

Скачать
43837
0
0

... профессиональных предписания); по последствиям реализации того или иного типа поведения для группы (социальной системы) - конструктивное и деструктивное; по форме протекания - кооперированное (ориентированное на поддержание сотрудничества) и конфликтное. В настоящее время в теории управления организационное поведение является одной из наиболее активно развивающейся отраслей управленческой науки, ...

0 комментариев


Наверх