3.2 Разработка структурной схемы

Разработку структурной схемы автоматического управления асинхронным двигателем начнем с необходимости контроля температуры корпуса двигателя, частоты вращения вала двигателя.

Кроме того для получения информации о скорости вращения вала двигателя расположим тахогенератор, вал которого жестко сопряжен с валом рабочего двигателя. Двухпроводная линия связи соединяет тахогенератор с блоком управления.

Для контроля работы двигателя и ведения статистики этой работы контроллер соединяется с ЭВМ верхнего уровня.

Таким образом структурная схема будет содержать систему датчиков, устройства сбора и промежуточной передачи информации, устройство управления работой установки и машины верхнего уровня.

3.3 Разработка функциональной схемы

Функциональную схему можно условно разбить на блоки:

блок центрального процессора;

блок ввода и преобразования аналоговых сигналов;

блок ввода-вывода дискретных сигналов;

линейные модули;

блок гальванических развязок.

3.3.1 Блок центрального процессора

Блок центрального процессора содержит однокристальный микроконтроллер КР1816ВЕ51, далее - контроллер, микросхему ППЗУ и устройства сопряжения. Для обеспечения доступа к памяти на разрешающий вход микросхемы ППЗУ - К537РФ6 заведен стробирующий выход адреса контроллера ALE, который свидетельствует об установке адреса ячейки памяти ППЗУ на шине адреса. При наличии сигнала выбора микросхемы для ППЗУ, оно (ППЗУ) выставляет на шину данных содержимое ячейки по указанному адресу. В остальных случаях выходы микросхемы памяти находятся в высокоимпедансном состоянии.

Также один из портов контроллера используется как вход от блока ввода и преобразования аналоговых сигналов, как строб завершения преобразования.

Четыре бита этого же порта используются для управления и опроса блока ввода дискретных сигналов, причем два бита - как управляющие и два как информационные.

3.3.2 Блок ввода и преобразования аналоговых сигналов

Базовым элементом блока ввода и преобразования аналоговых сигналов является аналогово-цифровой преобразователь (АЦП), который преобразует сигнал постоянного двуполярного тока в цифровой десятиразрядный двоичный код.

При поступлении сигнала на разрешение преобразования от контроллера АЦП замеряет сигнал на входе, и после завершения преобразования вместе с сигналом “Конец преобразования” выставляет на шину данных код.

3.3.3 Блок ввода-вывода дискретных сигналов

Блок ввода дискретных сигналов предназначен для ввода, нормализации и гальванической развязки сигналов от дискретных датчиков. Блок ввода дискретных сигналов работает совместно с выносными линейными модулями, объединение которых производится двухпроводной линией связи.

Опрос датчиков осуществляется последовательно время-импульсным квитированием сигналов. Цикл опроса разбит на 2 временных интервала - подготовительный и контрольный. Подготовительный сигнал необходим для заряда линейных модулей. Контрольный интервал разбит на 64 временных позиции, 62 из которых несут информацию о состоянии датчиков, 2 позиции выделены для контроля обрыва проводов линии связи.

Блок ввода дискретных сигналов формирует в линию связи специальные положительные и отрицательные импульсы. Импульсами положительной полярности пpоизводится питание и синхронизация pаботы модулей линейных. Ответные импульсы от модулей линейных фоpмиpуются во время пpохождения импульсов отрицательной полярности.

3.3.4 Математическое описание асинхронного двигателя

Асинхронная машина представляет собой систему, как минимум двух обмоток, одна из которых расположена на неподвижной части (статоре), другая на вращающейся части (роторе) машины. Момент машины образуется в результате взаимодействия токов в этих обмотках. Трехфазная обмотка статора подключается к питающей сети, трехфазная обмотка ротора замкнутая. Обмотки статора и ротора магнитосвязаны, поэтому потокосцепление обмотки статора определяется как токами, протекающими по трем фазам обмотки статора, так и токами фаз ротора. Это же относится и к обмотке ротора. Таким образом, имеются две трехфазные обмотки, вращающиеся одна относительно другой. Если к обмотке статора приложено трехфазное напряжение, а обмотка ротора замкнута, то мгновенные значения фазных напряжений статора и ротора задаются следующими уравнениями:

Управление асинхронным двигателем

Исходя из теории результирующего вектора, описанной в [ ], умножим первое и четвертое уравнения системы (1) на Управление асинхронным двигателем, второе и пятое на Управление асинхронным двигателем, третье и шестое на Управление асинхронным двигателем. Суммируя полученные произведения, получим:

Управление асинхронным двигателем

Управление асинхронным двигателем, или

Управление асинхронным двигателем

Управление асинхронным двигателем

где потокосцепления Y1 и Y2 зависят от токов ротора и статора, а также от индуктивностей обмоток машины.

Определим величины потокосцеплений статора и ротора. Предположим, что статор и ротор трехфазного асинхронного двигателя имеют симметричные обмотки, воздушный зазор по всей окружности ротора одинаков, магнитное поле в воздушном зазоре распределено синусоидально, оси обмоток статора и ротора не совпадают, образуя произвольный угол j (рис. 1).

Устанавливаем величину полного магнитного потока, сцепленного со статорной обмоткой фазы A. Для этого учитываем магнитные поля, созданные фазными токами I1A, I1B, I1C. Принимаем, что индуктивности фазных обмоток статора одинаковы и равны l1, взаимные индуктивности фаз A-B, A-C и B-C также одинаковы и равны l0 (по условиям симметрии асинхронной машины). Тогда общий магнитный поток, сцепленный со статорной обмоткой фазы A выразится следующим образом:

Управление асинхронным двигателем.

Подставив вместо I1C величину (-I1A-I1B) (так как сумма фазных токов асинхронного двигателя равна нулю), получим:

Управление асинхронным двигателем.

Проделав аналогичные операции с фазами B и C, запишем следующую систему уравнений:

Управление асинхронным двигателем

Заметим, что индуктивность фазной обмотки статора включает в себя индуктивности от полей рассеяния и от главного потока, то есть

l1=l1l+l10 (4).

Так как, в общем случае, взаимная индуктивность двух обмоток со сдвинутыми на некоторый угол осями равна произведению взаимной индуктивности, которая имела бы место при совпадении осей обмоток, на косинус угла между осями, то взаимную индуктивность можно выразить соотношением:

Управление асинхронным двигателем (5).

Учитывая выражения (4) и (5), преобразуем систему уравнений (3) к следующему виду:

Управление асинхронным двигателем

где L1 = l1l + 1,5× l10 = l1l + L0 - полная индуктивность фазы статора.

Рассуждая аналогичным образом относительно обмотки ротора, получим следующие выражения для фазных потокосцеплений роторной обмотки с собственным потоком:

Управление асинхронным двигателем

где L2 = l2l + L0 - полная индуктивность фазы ротора.

Определяем величину общего потокосцепления фазы A статора, созданного намагничивающими силами статора и ротора, исходя из рис. 1 и (6):

Управление асинхронным двигателем

или, учитывая, что I2a + I2b + I2c = 0 и Управление асинхронным двигателем:

Управление асинхронным двигателем

Выразив аналогичным образом потокосцепления для фаз статора B и C, запишем следующую систему уравнений:

Управление асинхронным двигателем

Учитывая, что Управление асинхронным двигателем и Управление асинхронным двигателем, умножим первое уравнение системы (8) на Управление асинхронным двигателем, второе на Управление асинхронным двигателем, третье на Управление асинхронным двигателем и просуммируем полученные произведения:

Управление асинхронным двигателем

или Управление асинхронным двигателем (9).

Таким же образом получим формулу потокосцепления ротора:

Управление асинхронным двигателем. (10)

Объединив уравнения (2), (10) и (11), получим систему уравнений обобщенного асинхронного двигателя:

Управление асинхронным двигателем

где L0 - взаимная индуктивность обмоток статора и ротора, L1 - индуктивность статора от потоков рассеяния, L2 - индуктивность ротора от потоков рассеяния.

Система уравнений асинхронной машины (11) непригодна для математического моделирования на ЭВМ, так как векторы, относящиеся к статору и ротору, записаны в различных системах координат.

Приведем систему (11) к системе координат, неподвижной относительно поля статора, вращающегося с угловой скоростью w0. Так как система координат поля статора повернута на угол (w0× t) относительно системы координат статора и на угол (w0× t-j), относительно системы координат ротора, где Управление асинхронным двигателем- угол между системами координат неподвижно связанными со статором и ротором, вращающемся с угловой скоростью w2, то для перехода в систему координат поля статора умножаем все слагаемые первого и третьего уравнений системы (11) на Управление асинхронным двигателем, а слагаемые второго и четвертого уравнений системы (11) на Управление асинхронным двигателем, предварительно представив вектор потокосцепления статора как Управление асинхронным двигателем и вектор потокосцепления ротора как Управление асинхронным двигателем, где Y10 и Y20 - векторы потокосцеплений статора и ротора в системе координат поля статора:

Управление асинхронным двигателем

или

Управление асинхронным двигателем

где Y10, Y20, I10, I20 - векторы потокосцеплений и токов статора и ротора в системе координат, неподвижной относительно поля статора, а Управление асинхронным двигателем- абсолютное скольжение асинхронного двигателя.

Приведем систему уравнений (12) к трем переменным: напряжению статора U1 и потокосцеплениям Y1 и Y2. Для этого из третьего уравнения системы (12) выразим ток статора, представленный во вращающейся системе координат: Управление асинхронным двигателем, где Y10 - потокосцепление статора во вращающейся системе координат. Подставив найденное значение тока статора в четвертое уравнение системы (12), получим:

Управление асинхронным двигателем.

Приняв, что Управление асинхронным двигателем - коэффициент электромагнитной связи статора, Управление асинхронным двигателем - переходная индуктивность ротора, определим значение тока ротора во вращающейся системе координат: Управление асинхронным двигателем. Подставляем найденное значение тока ротора во вращающейся системе координат во второе уравнение системы (12):

Управление асинхронным двигателем.

Откуда, приняв что Управление асинхронным двигателем, окончательно получим:

Управление асинхронным двигателем. (13)

Приведем первое уравнение системы (12) к вращающейся системе координат. Для этого из четвертого уравнения системы (12) выразим ток ротора, представленный во вращающейся системе координат: Управление асинхронным двигателем, где Y20 - вектор потокосцепления ротора во вращающейся системе координат. Подставив найденное значение тока ротора в третье уравнение системы (12), получим:

Управление асинхронным двигателем.

Приняв, что Управление асинхронным двигателем - коэффициент электромагнитной связи ротора, Управление асинхронным двигателем - переходная индуктивность ротора, определим значение тока статора во вращающейся системе координат: Управление асинхронным двигателем. Подставляем найденное значение тока статора в первое уравнение системы (12):

Управление асинхронным двигателем.

Откуда, приняв что Управление асинхронным двигателем, окончательно получим:

Управление асинхронным двигателем. (14)

Спроецируем уравнения (13) и (14) на оси d и q вращающейся с частотой поля системы координат, учитывая, что U10 = U10d + j· U10q, Y10 = Y10d + j· Y10q и Y20 = Y20d + j· Y20q:

Управление асинхронным двигателем

или преобразовав к нормальной форме Коши:

Управление асинхронным двигателем (15)

Уравнение для вращающего момента обобщенной электрической машины, согласно [1], имеет вид:

Управление асинхронным двигателем,

или перейдя к проекциям на оси d и q:

Управление асинхронным двигателем (16).

Все вышеприведенные рассуждения справедливы для обобщенной двухполюсной машины. В случае реальной многополюснолй машины ее необходимо привести к эквивалентной двухполюсной. С этой целью запишем уравнение движения:

Управление асинхронным двигателем,

где w - угловая скорость реальной машины, M' - вращающий момент реальной машины, Mс - механический вращающий момент нагрузки. Перепишем уравнение движения, учитывая, что M’ = p· M и w = W/p, где p - число пар полюсов реальной многополюсной машины:

Управление асинхронным двигателем. (17)

Объединив (15), (16) и (17), получим систему уравнений асинхронного двигателя во вращающейся с частотой поля системе координат:

Управление асинхронным двигателем (18)

Система уравнений (18) удобна тем, что может быть решена численными методами. Так, задавшись напряжением, статическим моментом и параметрами схемы замещения, можно найти потокосцепления статора и ротора Y10 и Y20, момент М и скорость вращения ротора асинхронной машины w.

3.4 Проектирование робота

3.4.1 Постановка задачи

По заданной кинематической схеме манипулятора и заданному положению выходного звена рассчитать переменные параметры манипулятора, т. е. решить обратную задачу кинематики с использованием матричного метода. Проверку выполнить графическим методом. Размеры звеньев подобрать самостоятельно, шаг изменения размеров 50 мм.


Информация о работе «Управление асинхронным двигателем»
Раздел: Наука и техника
Количество знаков с пробелами: 102925
Количество таблиц: 0
Количество изображений: 29

Похожие работы

Скачать
140823
20
31

... . Целью дипломного проекта является разработка и исследование автоматической системы регулирования (АСР) асинхронного высоковольтного электропривода на базе автономного инвертора тока с трехфазным однообмоточным двигателем с детальной разработкой программы высокого уровня при различных законах управления. В ходе конкретизации из поставленной цели выделены следующие задачи. Провести анализ ...

Скачать
41757
0
0

... тем достоинством, что в самом регуляторе выделяется значительно меньшая мощность, чем в нагрузке.   ОСНОВНАЯ ЧАСТЬ   1 Регулирование скорости вращения асинхронных двигателей   Большинство двигателей переменного тока вращается с угловой скоростью, которая определяется в первую очередь частотой питающего напряжения. Угловая скорость синхронных двигателей зависит только от частоты питания, а ...

Скачать
27592
3
7

... двигателя; кратковременный; повторно-кратковременный; ударный (момент статистической нагрузки резко увеличивается по различным законам, а затем снижается до момента холостого хода). 1 Асинхронные двигатели в системах электропривода   1.1 Параметры задания и выбор варианта задания Вариант задания выбирается по двузначному шифру, присвоенному студенту преподавателем; для студентов заочной ...

Скачать
52086
0
0

... электроприводов имеет свои недостатки и ограничения. . Автоматическое управление двигателями переменного тока Асинхронные двигатели с короткозамкнутым ротором запускают прямым включением в сеть. Схемы управления двигателями переменного тока имеют коммутационную аппаратуру, устройства защиты и различные блокировки. Простейшей схемой управления асинхронным двигателем с короткозамкнутым ротором ...

0 комментариев


Наверх