Вопрос 3. Определитель квадратной матрицы.

В вопросе рассматривается одна из характеристик матрицы - числовая. Все свойства определителя (числовые характеристики) матрицы рассматриваются для того, чтобы это число стало возможным находить. Введение понятия определителя матрицы позволяет расширить возможности теории решения систем линейных уравнении и другие приложения теории матриц.

Итак, введем определение определителя матрицы и рассмотрим его свойства.

Пусть дана квадратная матрица А=(aij)n n, где аij Î R

Для введения определения матрицы обратимся к некоторым вопросам теории подстановок.

Подстановка t = 1 2 … n называется взаимно-однозначное

t (1) t (2) …t (n)

отображение множества М={1,2,...,n} на себя. Множество всех подстановок обозначается Sn, |Sn|=n!

Подстановки характеризуются своей четностью и нечетностью, которые вводятся через инверсию:

-если у подстановки четное число инверсии, то она четная;

-если-нечетное число инверсий, то она нечетная.

Для обозначения четности подстановки используется символ sgn(t ) -знак подстановки. Зафиксируем ряд необходимых утверждений:1) t = E (единичная)-четная; 2) sgn (t --1 ) = sgn t ;

3) одна транспозиция меняет четность подстановки.

Опр.1.Определителем квадратной матрицы называется число, равное сумме n! слагаемых, каждое из которых есть произведение n элементов матрицы, взятых ровно по одному из каждой строки и каждого столбца матрицы со знаком sgn (t )

где t -подстановка из индексов элементов произведения ,т.е.

|A|=å sgn(t )a1t (1) a2t (2) …ant (n) , A=(aij)n*n

приняты также обозначения для определителя: def A, Δ.

Теорема 2. Определитель матрицы обладает рядом свойств, среди которых следующие:

1° . |A|=|At|,где Аt -трансионированная;

2° . Определитель матрицы с нулевой строкой равен нулю;

3° . Определитель матрицы с двумя пропорциональными строками равен нулю.

4° . Определитель матрицы с двумя равными строками равен нулю.

5° . Перестановка двух строк(столбцов) матрицы изменяет знак определителя.

6° . Если к одной строке матрицы прибавить другую,уменьшенную на число, не изменяет ее

определитель.

7° . Если i-строка (столбец) матрицы имеет вид i(a1+...ak b1+...bk c1+....ck),то определитель такой матрицы равен сумме K-определителей,каждый из которых в i-строке имеет соответственно ее слагаемые, а остальные элементы совпадают с элементами матрицы.

8° . Если строку (столбец) матрицы умножить на число x, то определитель матрицы умножится на это число.

и другие.

Для решения проблемы вычисления определителя матрицы вводятся понятия минора элемента aij (Mij) и его алгебраического дополнения (Aij) .

Минором Mij элемента aij матрицы называется определитель матрицы,

полученный вычеркиванием i-строки и j-столбца.

Алгебраическим дополнением Aij элемента aij называется число (-1)i+j Мij

Имеет место теорема о разложении по элементам строки (столбца).

Теорема 3 . |A|= a1jA1j +a2jA2j +....+anjAnj или

|A|=ai1Ai1 +ai2Ai2 +...+ain Ain .

Доказательство разобьем на три случая:

Cлучай 1. a11…a1n

|A|= a21…a2n = ann Mnn

………

0……ann

Воспользуемся для доказательства определением определителя

|A|=å sgn(t )a1t (1) a2 t (2)…a n-1,t (n-1) a nt (n)

Так как в n-ой строке все элементы кроме ann нули, то все слагаемые в определителе кроме ann равны нулю. Тогда определитель такой матрицы равен:

Вопросы к гос. экзамену по дисциплине "Математика – Алгебра"sgn(t ) a1t (1) a 2 t (2)....a n-1,t (n-1) a n n =a n n (Вопросы к гос. экзамену по дисциплине "Математика – Алгебра"sgn(t ’) a 1t (1) a 2 t (2) ...a n-1,t (n-1)),где

t = 1 2 ... n-1 n t ’ = 1 2 ... n-1

t (1) t (2) ... t (n-1) t (n) , t (1) t (2) ... t (n) , т.к

t = 1 2 ... n-1 n = 1 2 .... n

t (1) t (2) ... t (n-1) t (n ) t (1) t (2) ... t (n) ,то sgn (t ) =sgn(t ’).

Мы видим, что в скобках определитель порядка (n-1),полученного вычеркиванием n-ой строки и n-ого столбца. Поэтому

|A|=annMnn, что и требовалось доказать.

Случай 2.

a 11 ... a 1j .. a 1n

|A|= ................................. = a ij A ij

0 ... a ij ... 0

..................................

a n1 ... a nj ... a nn

Для доказательства воспользуемся свойством перестановки строк и столбцов матрицы, получим:

A11 ... a1j ... a1n a11 .. a1j ..a1n a11 .. a1n .. a1j

A = ....................... = Вопросы к гос. экзамену по дисциплине "Математика – Алгебра"n-i .................... =Вопросы к гос. экзамену по дисциплине "Математика – Алгебра"n-i Вопросы к гос. экзамену по дисциплине "Математика – Алгебра"n-j .................... =

0 .. aij ... 0 an1 .. anj ..ann an1 .. ann ..anj

an1 .. anj ... ann 0 .. aij .. 0 0 .. 0 .. aij

=Вопросы к гос. экзамену по дисциплине "Математика – Алгебра"2n-Вопросы к гос. экзамену по дисциплине "Математика – Алгебра"Mij*aij=Вопросы к гос. экзамену по дисциплине "Математика – Алгебра"i+jaijMij=aijAij

Случай 3. |A|=a1iA1i +a2iA2i +....+aniAni.

A11 .. a1j .. ann ... a1j+0+..+0 ... .. a1j .. .. 0 .. ... 0

A21 .. a2j .. a2n ... 0 +a2j+..+0 .. .. 0 .. .. a2j .. ... 0

A = ..................... = ......................... = ......... + .......... +..+ ....... =

an1 .. anj .. ann ... 0+0+..+anj ... .. 0 .. .. 0 .. ...anj

= a1jA1j+a2jA2j+..+anjAnj

Рассмотренная теорема позволяет вычислить определитель матрицы любого порядка .Теория определителей имеет приложительное значение, то есть используется в качестве средства для решения вопрос в математике. В частности, она лежит в основе решения систем линейных уравнений как одного из способов. Возможность использования теории определителей для решения систем зафиксированы теоремой Крамера.

Теорема 4. (Крамера). Если |A| не равен нулю, то система å aijxj=bi, где i=1,n; j=1,n имеет единственное решение, которое находится по формуле:

xi= Вопросы к гос. экзамену по дисциплине "Математика – Алгебра" , где Вопросы к гос. экзамену по дисциплине "Математика – Алгебра" = A ,

D xi-определитель матриц, полученных из А заменой i-столбца столбцом свободных членов.

Пусть (1) å aijxj=bj, i=j=1,n, |A| ¹ 0. Запишем систему (1) в виде матричного уравнения (2): AX=b, где А-основная матрица системы, .

X1 b1

X= X2 , b = b2

.. ..

xn bn

Если |A| ¹ 0® $ А-1 Þ А-1АХ=А-1b Þ X=A-1 b. Известна теорема утверждающая, что A-1 = Вопросы к гос. экзамену по дисциплине "Математика – Алгебра" A* , где A* -присоединенная матрица к матрице A, она состоит из алгебраических дополнений элементов, расположенных в столбцах. Тогда:

A11 A21 .. An1 b1 b1A11+b2A22+..+bnAn1

X=Вопросы к гос. экзамену по дисциплине "Математика – Алгебра" A* b =Вопросы к гос. экзамену по дисциплине "Математика – Алгебра" A12 A22 .. An2 b2 = Вопросы к гос. экзамену по дисциплине "Математика – Алгебра" b1A12+b2A22+..+bnAn2 =

........................ ... ...................................

A1n A2n .. Ann bn b1A1n+b2A2n+..+bnAnn

Вопросы к гос. экзамену по дисциплине "Математика – Алгебра"x1

=Вопросы к гос. экзамену по дисциплине "Математика – Алгебра"Вопросы к гос. экзамену по дисциплине "Математика – Алгебра"x2 ,

......

Вопросы к гос. экзамену по дисциплине "Математика – Алгебра"xn

что и позволит получить формулу: Xi=Вопросы к гос. экзамену по дисциплине "Математика – Алгебра" , где Вопросы к гос. экзамену по дисциплине "Математика – Алгебра" = A , i=1,n

Вопрос 4. Бинарные отношения.

Математика как наука отражает мир взаимодействующих простых и сложных объектов (вещей, явлений, процессов). Абстрагируясь от реальности, математика рассматривает унарные, бинарные и другие отношения.

В вопросе требуется рассмотреть бинарные отношения, их свойства и особо обратить внимание на отношение эквивалентности, заданного на одном множестве. Рассмотрим прямое произведение двух множеств. A*B={a,b}, aÎ A, bÎ B}. Мы имеем множество упорядоченных пар. Есть смысл рассматривать его подмножество, которое и носит название “бинарное отношение”.

Опр.1 Бинарным отношением, заданным на множестве А, называется подмножество прямого произведения А*А. В силу своей природы, бинарные отношения являются множеством упорядоченных пар элементов из А.

Обозначения: W={ ( a,b) /,a,bÎ A} ; aWb, a,bÎ A; ( a,b) Î W,где a,bÎ A

Например, бинарные отношения являются:

1. "^ "на множестве прямых.

2. "=" на множестве чисел.

3. " @ " изоморфизм на множестве алгебр.

4. " ~ " эквивалентность систем и др.

Бинарные отношения могут обладать свойствами:

1) рефлексивность: " aÎ A, aWa;

2) симметричность: " a,bÎ A, aWbÞ bWa;

3) транзитивность: " a,b,c Î A,aWb и bWcÞ aWc

4) связность: " a,bÎ A,aWbÞ bWa;

5) антирефлексивность: " aÎ A,( a,a) Ï W;

6) антисимметричность: " a,bÎ A,aWb,bWaÞ a=b

В зависимости от того, каким набором свойств обладают отношения, они допускают

классификацию, которую представим схемой:

Бинарное

отношение

функциональность эквивалентность: порядок:

" xÎ A, $ ! yÎ A: рефлексивность, антисимметричность,

f:x® y cимметричность, транзитивность

Вопросы к гос. экзамену по дисциплине "Математика – Алгебра" транзитивность

строгий порядок: нестрогий порядок:

антирефлексивность рефлексивность

частичный порядок: полный порядок:

не обладает свойством обладает связностью

связности

Остановимся на отношении эквивалентости, то есть на отношении WÌ A*A, обладающее свойствами рефлексивности, симметричности, транзитивности. Легко проверить, что примерами таких отношений являются "=", "~", "сравнение по модулю", изоморфизм алгебр и другие.

Отношение эквивалентности играет большую роль в математике, значимость его определяется тем, что оно задает разбиение, а потому позволяет получать новые множества. Рассмотрим это подробнее.

Разбиением множества называется совокупность непустых подмножеств, непересекающихся, объединение которых совпадает с данным множеством.

Имеет место теорема, которая позволяет рассматривать отношение эквивалентности как разбиение.

Теорема 2. Бинарное отношение задает на A¹ 0 разбиение.

Для доказательства теоремы введем такое понятие как класс эквивалентности:

Ka={ x/xWa /x,aÎ A} a-образующий элемент класса.

Вопросы к гос. экзамену по дисциплине "Математика – Алгебра"

свойствами рефлексивности, симметричности, транзитивности. Легко проверить, что примерами таких отношений являются "=", "~", "сравнение по модулю", изоморфизм алгебр и другие.

Отношение эквивалентности играет большую роль в математике, значимость его определяется тем, что оно задает разбиение, а потому позволяет получать новые множества. Рассмотрим это подробнее.

Разбиением множества называется совокупность непустых подмножеств, непересекающихся, объединение которых совпадает с данным множеством.

Имеет место теорема, которая позволяет рассматривать отношение эквивалентности как разбиение.

Теорема 2. Бинарное отношение задает на A¹ 0 разбиение.

Для доказательства теоремы введем такое понятие как класс эквивалентности:

a-образующий элемент класса.

Классы эквивалентности обладают свойствами:

1. " aÎ A попадает в какой-либо класс, что означает, что Ka¹ 0 . Это утверждение следует из введенного определения класса.

Любые два элемента из класса находятся в отношении, т.е. если b,cÎ K a , b w c.

c,bÎ KaÞ a w c, Þ c w a , Þ c w b

a w b a w b

Это свойство позволяет утверждать, что любой представитель класса может являться его образующим.

3° . Классы не пересекаются, т.е. КаÇ Кb=Æ

Пусть КаÇ Кb¹ Æ ® $ сÎ КаÇ КbÞ сÎ Ка,сÎ КbÞ сWа,cWbÞ аWс,сWbÞ аWbÞ Ка=Кb.

Свойства классов и позволяют утверждать истинность теоремы: A,W-эквивалентности Þ Ka ,Kb ,...Þ

a) классы-подмножества A;

b) классы-неизвестного подмножества;

c) классы-не пересекающиеся;

d) È Ka =A , аÎ А

Имеет место и обратное утверждение.

Теорема 3.Если на А задано отношение Rs, соответствующее разбиению S, то Rs-отношение эквивалентности .

Пусть A, Rs, S-разбиения, следовательно, A разбивается на подмножества, объединение которых составляет A.

Если подмножества рассматривать как классы, полученные в результате отношения Rs: "принадлежность одному подмножеству", то легко доказать, что все свойства классов имеют место, поэтому Rs-эквивалентность.

Обозначим множество классов эквивалентности через A/w. Это новое множество называют фактор-множеством. Итак, A/w= { Ka /a Î A } .

Рассмотрим некоторые примеры применения теории отношении эквивалентности:

Hа множестве дробей {a/b, аÎ Z, bÎ N} зададим отношение "=": а/b=с/dÛ ad=bс.

Тогда класс эквивалентности Ка/b={x/y| x/y=a/b}-рациональное число, а {Ka/b}=A/W-множество рациональных чисел.


Информация о работе «Вопросы к гос. экзамену по дисциплине "Математика – Алгебра"»
Раздел: Математика
Количество знаков с пробелами: 66655
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
346476
3
0

... кадров профессионалов. Существует мнение, что профессиональный уровень управленческого персонала обеспечивается знанием производства и опытом управленческой работы, по необходимости дополненными краткосрочными курсами повышения квалификации или переподготовки. Это ошибочное мнение. Профессиональное мышление формируется на ранних стадиях получения высшего образования и профессиональной ...

Скачать
301922
14
0

... и это также под контролем, так как внеклассные интересы якобы отвлекали детей от занятий, и учащихся окружали всевозможные запреты. Таким образом, культурно-бытовой облик учащихся начальной и средней школы в XIX – начале XX века отличали две его специфические черты: возраст учащихся (они постоянно находились в стадии развития) и попытки непрерывного контроля над этим развитием самого учебного ...

Скачать
158303
36
0

... -педагогическая или научно-техническая проблема, являющаяся новым научным вкладом в теорию определенной области знаний (педагогику, технику и другие). 4.   ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ВЫПОЛНЕНИЯ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ БАКАЛАВРА ФИЗИКО-МАТЕМАТИЧЕСКОГО ОБРАЗОВАНИЯ ПРОФИЛЬ ИНФОРМАТИКА   4.1. Положение о выпускной квалификационной работе бакалавра физико-математического образования: ...

Скачать
790698
3
0

... ; технологическая функция имеет подфункции экономии учебного времени и учебного материала, устранения его дублирования и т.д. ГЛАВА 4. СОДЕРЖАНИЕ ИСНТРУМЕНТАЛЬНО-МЕТОДОЛОГИЧЕСКОГО ОБЕСПЕЧЕНИЯ ПЕДАГОГИЧЕСКОЙ ИНТЕГРАЦИИ 4.1. Типология интегративно-педагогического исследования В связи с поднимаемой в данном параграфе проблемой большой интерес вызывает монография В.М.Полонского "Оценки ...

0 комментариев


Наверх