0 < ε < a

Пусть dimH =n. Тогда справедлива теорема.

Теорема 1.3. Самосопряженный оператор А представим в виде линейной комбинации ортопроекоров А = aР1 + bР2, 0<a<b тогда и только тогда, когда

(А) {0, a, b, a + b}(к, a + b - εк}), 0<εк<1, и

dimНεк = dimНa+b-εк εк , Нa+b-εк - собственные подпространства оператора А, отвечающие εк) к=1,…m.

Доказательство. Пусть А = aР1 + bР2, 0<a<b. Найдем (А).

1) х Н0,0, то Ах = 0 и 0(А);

2) х Н0,1, то Ах = bx и b(А);

3) х Н1,0, то Ах = ax и a(А);

4) х Н1,1, то Ах = (a+b)x и a+b(А).

Тогда (А) {0, a, b, a + b}(к , a + b - εк}), где 0<εк<1, к=1,…m. Причем числа εк, a + b - εк входят одновременно в спектр А, и соответству-
ющие собственные подпространства ортогональны и одномерны, так как А=А*. Тогда сумма всех собственных подпространств, отвечающих одному εк также инвариантна относительно А и dimНεк = dimНa+b-εк = qk. (с учетом кратности εк)

Обратно. Существует единственное разложение Н в силу (1.4.)

Н = Н(0) Н(a) Н(b)Н(a+b) (2Нк)) (1.9.)

Где Н(0)0,0, Н(a) 1,0, Н(b)0,1, Н(a+b)1,1 или

Н = Н(0) Н(a) Н(b)Н(a+b) (εк Нa+b-εк) (1.10.)

Положим

P1 = PaPa+b ((Iк )) (1.11.)

Р2 = Pb Pa+b  ( Iк )) (1.12.)

Но тогда

1 + bР2 = aPabPb  (а+b)Pa+b  (a(Iк ))

(bIк )) = A.

Спектр оператора А совпадает с {0, a, b, a + b}(к , a + b - εк}), (0<εк<1, к=1,…m) по построению и А = А* как вещественная комбинация ортопроекторов.


§ 2. Спектр суммы двух ортопроекторов в сепарабельном гильбертовом пространстве

2.1. Спектр оператора А = Р1 + Р2. Изучим оператор Р1 + Р2 в сепарабельном гильбертовом пространстве.

Теорема 2.1. Самосопряженный оператор А представим в виде суммы двух ортопроекторов А = Р1 + Р2 тогда и только тогда, когда (А) = [0, 2] и пространство Н можно разложить в ортогональную сумму инвариантных относительно А пространств

Н = Н0 Н1 Н2 (2L2((0, ), dρк))) (2.1.)

и меры ρк инвариантны относительно преобразования 1+х → 1-х.

Доказательство. Пусть А = Р1 + Р2. Н00,0, Н11,0Н0,1, Н21,1 

Поставим в соответствие φ→ε cosφ, где φ (0, ). Тогда, как было найдено выше, спектр (А)  [0, 2] и Н можно разложить (опираясь на спектральную теореме 2.3. главы II) в ортогональную сумму (2.1.)

Н = Н0 Н1 Н2 (2L2((0, 2), dρк)))

Поскольку собственные подпространства, соответствующие собственным значениям А 1+ε , 1-ε, 0<ε<1 входят одновременно в спектр и их значения совпадают, то каждая мера ρк (к = 1, 2, …) должна быть инвариантной относительно преобразования 1 + х → 1- х.

Обратно. Пусть имеет место (2.1.) и (А)  [0, 2]. Тогда зададим ортопроекторы Р1΄ Р2΄ равенствами

Р1΄ = P1P2((Iк ))

Р2΄ = P2  ( Iк ))

где Pi: Н→Нi (i = 0, 1, 2) ортопроектор, Ik – единичный оператор в L2((0, 2), dρк)). Тогда А =Р1΄ + Р2΄ - самосопряженный оператор, спектр которого содержится в [0, 2], так как Рк΄ (к = 1, 2) является суммой ортопроекторов на взаимно ортогональные пространства.

2.2. Спектр линейной комбинации А = aР1 + bР2 (0<a<b). Рассмотрим теперь случай, когда А = aР1 + bР2 (0<a<b).

Теорема 2.2. Самосопряженный оператор А представим в виде линейной комбинации двух ортопроекторов А = aР1 + bР2, 0<a<b тогда и только тогда, когда (А)  [0, a] [b, a+b] и Н можно представить в виде ортогональной суммы инвариантных относительно А пространств

Н = Н0 Нa НbНa+b (2L2([0, a] [b, a+b], dρк)))) (2.2.)

и меры ρк инвариантны относительно преобразования х→a+b.

Доказательство. Пусть А = aР1 + bР2 (0<a<b). Пусть Н00,0, На0,1, Нb1,0, Нa+b1,1. Так как (А)  [0, a] [b, a+b] и собственные подпространства, отвечающие собственным значениям оператора А входят в Н одновременно (причем их размерности совпадают) то аналогично теореме 2.1. получаем

Н = Н0 Нa НbНa+b (2L2([0, a] [b, a+b], dρк))))

где меры ρк (к = 1, 2, …) инвариантны относительно преобразования х → a+b-х.

Обратно, пусть (А)  [0, a] [b, a+b] и имеется разложение Н (2.2.). Тогда зададим Р1 и Р2 следующим образом

P1 = PaPa+b ((Iк ))

Р2 = Pb Pa+b ( Iк ))

где Рα: Н→Нα , α = a, b, a+b – ортопроекторы, Iк – единичный оператор в L2([0,a] [b, a+b]). Тогда

А = aР1 + bР2 = aР1 bР2(a+b)Pa+b ((Iк ))

 ( Iк ))


ЗАКЛЮЧЕНИЕ

В дипломной работе изучена пара ортопроекторов в сепарабельном гильбертовом пространстве Н, приведено описание всех неприводимых и неэквивалентные *-представления *-алгебры P2 .

P2 = С <p1, p2 | pк2 = pк* =pк>.

А именно: 4 одномерных π0,0(p1) = 0, π0,0(p2) = 0; π0,1(p1) = 0, π0,1(p2) = 1; π1,0(p1) = 1, π1,0(p2) = 0; π1,1(p1) = 1, π1,1(p2) = 1.

И двумерные:  , τ (0, 1)

Изучен спектр операторов Р1 + Р2, aР1 + bР2 (0<a<b), а также необходимые и достаточные условия представимости самосопряженного оператора А в виде А = Р1 + Р2  и А = aР1 + bР2 (0<a<b).


ЛИТЕРАТУРА

1.          Ахиезер Н.И., Глазман И.М. Теория линейных операторов в гильбертовом пространстве, М., Наука, 1966.

2.          Березенский Ю.М., Ус Г.Ф., Шефтель З.Г. Функциональный анализ, К., Выща школа, 1990.

3.          Браттели У., Робинсон Д. Операторные алгебры и квантовая статистическая механика: С*- W* -алгебры. Группы симметрий. Разложение состояний., М., Мир, 1982.

4.          Диксмье Ж. С*-алгебры и их представления. М., Наука, 1974.

5.          Кириллов А.А. Элементы теории представлений. М., Наука, 1978.

6.          Кужель А.В. Алгебры конечного ранга, С. СГУ, 1979.

7.          Ленг С. Алгебра. М., Мир, 1968.

8.          Мерфи Д. С*-алгебры и теория операторов. М., Мир, 1998.

9.          Наймарк М.А. Нормированные кольца. М., Гостехиздат, 1956.

10.       Рудин У. Функциональный анализ. М., Мир, 1975.

11.       NishioK, Linear algebra and its applications 66: 169-176, Elsevier Science Publishing Co., Inc., 1985.

12.       Samoilenko Y.S., Representation theory of algebras, Springer, 1998.


Информация о работе «*-Алгебры и их применение»
Раздел: Математика
Количество знаков с пробелами: 69018
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
65703
0
0

... ;0,0(p2) = P0,0. В силу теоремы 2.8. главы I разложения I, Р1 и Р2 также определяются однозначно. § 2. Два ортопроектора в сепарабельном гильбертовом пространстве 2.1. Неприводимые *-представления *-алгебры P2 . Пусть А = Р1 - Р1┴ = 2Р1 – I и В = Р2 – Р2┴ = 2Р2 – I. Тогда А2 = I , В2 = I. Следовательно А и В самосопряженные унитарные операторы в Н. Положим U=АВ, тогда U-1=ВА и А-1UА = ...

Скачать
75806
4
238

... для того, чтобы показать школьникам образец современной математической теории. 2.2.3.2. ПРОГРАММА И СОДЕРЖАНИЕ ЗАНЯТИЙ ФАКУЛЬТАТИВНОГО КУРСА «ЭЛЕМЕНТЫ СОВРЕМЕННОЙ АЛГЕБРЫ» В качестве экспериментальной работы мы предлагаем изучение элементов современной алгебры в рамках факультативного курса по математике. Нами была разработана программа факультативного курса «Элементы современной алгебры» и ...

Скачать
10756
9
3

... угодно сложные в логическом отношении схемы, можно строить, используя два приема: 1.  последовательное соединение элементов; 2.  перестановка входов элементов. Этим двум физическим приемам в алгебре логики соответствуют: 1.  принцип суперпозиции (подстановка в функцию вместо ее аргументов других функций); 2.  подстановка аргументов (изменение порядка записи аргументов функций или замена ...

Скачать
66655
0
0

... 4. Бинарные отношения. Математика как наука отражает мир взаимодействующих простых и сложных объектов (вещей, явлений, процессов). Абстрагируясь от реальности, математика рассматривает унарные, бинарные и другие отношения. В вопросе требуется рассмотреть бинарные отношения, их свойства и особо обратить внимание на отношение эквивалентности, заданного на одном множестве. Рассмотрим ...

0 комментариев


Наверх