2.2 Регулярные возмущения решений задачи Коши для обыкновенных дифференциальных уравнений

Рассмотрим задачу Коши

(2.2.1)


Функция  непрерывна по переменной  и бесконечно дифференцируемая по переменным  и  при , .

Предполагается, что вырожденная задача

(2.2.2)

имеет единственное решение при , причем .

Полагая

(2.2.3)

и воспользовавшись тем, что функция удовлетворяет уравнению (2.2.2) запишем систему уравнений для функции  в виде

(2.2.4)

где

(2.2.5)

(2.2.6)

Будем искать решение задачи Коши (2.1.4) в виде формального ряда по степеням малого параметра


(2.2.7)

Для определения неизвестных функций  получаем рекуррентную систему задач Коши для линейных уравнений (уравнений в вариациях)

(2.2.8)

Уравнение (2.2.8) называют уравнением в вариациях.

Вычислим две первых функции

 (2.2.9)

Подставляя разложения (2.2.7) и (2.2.8) в уравнения (2.2.4),получаем рекуррентную систему уравнений

(2.2.10)

Все уравнения (2.2.4) имеют одинаковую структуру


, (2.1.11)

Столбцы фундаментальной матрицы  образуют фундаментальную систему решений. При помощи формулы Коши получим решение в виде

(2.2.12)

Линейный оператор  

(2.2.13)

Покажем, что ряд (2.2.3) асимптотический для решения . Положим

(2.2.14)

Применяя формулу Тейлора, получаем

(2.2.15)

где функции  те же, что и в формуле (19.8), а


(2.2.16)

Подставляя представление (2.2.14) в уравнение (2.2.4), воспользовавшись представлением (2.2.15) и формулами (2.2.8), получаем уравнение для функции .

(2.2.17)

где

(2.2.18)

Из формулы (2.2.6) получаем

и формула (2.2.18) может быть записана в виде

 (2.2.19)

Так как вторые производные функции  ограничены, то функция  удовлетворяет условию Липшица и


(2.2.20)

Вспоминая определение оператора , получаем функциональное уравнение

(2.2.21)

Используя принцип сжатых отображений, покажем, что уравнение (2.1.21) при  имеет единственное решение, и справедливо неравенство . Тем самым будет доказано, что ряд    является асимптотическим рядом для функции , являющейся решением задачи Коши (2.2.1).

Пусть . Так как частные производные равномерно непрерывны, то из (2.2.17)- (2.2.20) получаем оценки

при . Таким образом, шар радиуса  отображается в себя при.

Используя (2.2.20), получаем


Используя равномерную непрерывность частных производных, получаем

Уменьшая, если нужно,  получаем, что при  оператор  является оператором сжатия. Следовательно,

и ряд асимптотический для решения  задачи Коши (2.1.1).


Информация о работе «Асимптотика решений дифференциальных уравнений»
Раздел: Математика
Количество знаков с пробелами: 31319
Количество таблиц: 15
Количество изображений: 25

Похожие работы

Скачать
19201
0
11

... . Ван-дер-Поль показал, что для этой цели можно использовать малые нелинейности, однако даже при малых нелинейностях получившаяся задача не допускала интегрирования колебаний в квадратурах. Ван-дер-Поль разработал приближенный асимптотический метод интегрирования дифференциальных уравнений второго порядка подобного рода. 1.1. Метод усреднения Ван-дер-Поля. В своих исследованиях Ван-дер-Поль ...

Скачать
10153
0
2

... Подробное описание различных свойств решений уравнения  в связи с их многочисленными приложениями содержится в учебном пособии [8]. Заключение Исследование аналитических свойств решений системы двух нелинейных дифференциальных уравнений третьего порядка, порождаемой прямым и обратным преобразованиями Беклунда высшего аналога второго уравнения Пенлеве позволило доказать существование у неё ...

Скачать
413442
0
0

... мере, синергетическим стилем мышления может быть некой платформой для открытого творческого диалога между учеными, мыслителями, деятелями искусства, имеющими различные творческие установки и взгляды на мир. 2. Некоторые парадоксальные следствия синергетики Множество новых парадоксальных идей, образов и представлений возникает в синергетике. Кроме того, с точки зрения синергетики может быть ...

Скачать
26330
0
1

... , момента электромагнитного импульса. Таким образом, имеем серьезную, необходимо требующую разрешения проблему, в которой надо должным образом проанализировать известные либо вскрыть новые реалии в физическом содержании уравнений Максвелла, в частности, понять роль и место векторных потенциалов в явлениях электромагнетизма. Покажем, как это можно сделать! Поставленная задача и проведенный в этом ...

0 комментариев


Наверх