2.3 Метод Леверрьє
Цей метод [1] розкриття вікового визначника заснований на формулах Ньютона для сум степенів коренів алгебраїчного рівняння.
Нехай
(1)
— характеристичний поліном даної матриці та — повна сукупність його коренів, де кожен корінь повторюється стільки разів, яка його кратність.
Покладемо
.
Тоді при справедливі формули Ньютона
. (2)
Звідси
(3)
Якщо суми відомі, то за допомогою формул (3) можна крок за кроком визначити коефіцієнти характеристичного полінома (1).
Суми обчислюються таким чином: для маємо:
Тобто
(4)
Далі, як відомо, є власними значеннями матриці. Тому
тобто якщо
то
. (5)
Степені знаходяться безпосереднім перемножуванням.
Таким чином, схема розкриття вікового визначника по методу Леверрьє вельми проста, а саме: спочатку обчислюються — степені даної матриці А, потім знаходяться відповідні sk - суми елементів головних діагоналей матриць , нарешті, по формулах (3) визначаються шукані коефіцієнти .
Метод Леверрьє вельми трудомісткий, оскільки доводиться підраховувати високі степені даної матриці. Достоїнство його — нескладна схема обчислень і відсутність виняткових випадків.
Приклад. Методом Леверрьє розгорнути характеристичний визначник матриці
Розв’язання. Утворюємо степені матриці А. Маємо:
Відмітимо, що не було необхідності обчислювати повністю, досить було знайти лише головні діагональні елементи цієї матриці.
Звідси
Отже, по формулах (3) матимемо:
Таким чином, ми одержуємо вже відомий результат:
2.4 Метод невизначених коефіцієнтів
Розгортання вікового визначника можна також здійснити за допомогою знаходження досить великої кількості його числових значень.
Нехай
(1)
є віковим визначником матриці А, тобто
.
Якщо в рівності (1) послідовно покласти, то для коефіцієнтів одержимо систему лінійних рівнянь
(2)
Звідси
(3)
І
З системи (3) можна визначити коефіцієнти характеристичного полінома (1).
Вводячи матрицю
і вектори
систему (3) можна записати у вигляді матричного рівняння
(4)
звідси
(5)
Відмітимо, що обернена матриця залежить тільки від порядку n вікового визначника і може бути знайдена наперед, якщо доводиться мати справу з масовим розкриттям вікових визначників одного і того ж порядку.
Таким чином, застосування цього методу зводиться до обчислення числових визначників
і знаходження розв’язку стандартної лінійної системи (4).
... і простору матриця лінійного оператора має діагональний вид, то всі вектори базису є власними векторами оператора . Таким чином, доведено наступне твердження. Теорема 5.2. Для того, щоб матриця лінійного оператора у базисі простору була діагональною, необхідно і достатньо, щоб вектори були власними векторами оператора . Теорема 5.3. Якщо власні значення лінійного оператора , діючого в -мі ...
... йний оператор задається матрицею . Отже, при зафіксованому базисі кожному лінійному оператору простору відповідає певна квадратна матриця -го порядку – матриця цього оператора. 3. Власні вектори й власні значення лінійного оператора Означення 1. Підпростір лінійного простору називається інваріантним відносно оператора , якщо , тобто якщо образ будь-якого вектора із міститься в . ...
... і означення Означення: Дифуром називається рівняння, яку містить шукану похідну ф-ії. Найбільший порядок похідних називається порядком диф.рівняння. Означення матрець, типи матрець. Означення: Матрицею називається прямокутна таблиця чисел, яка має m рядків і n стовпчиків. Їх позначають великими літерами A,B,C і т.д. Типи матрець: Квадратна матриця, в якої елементи головної діагоналі дорівнюють ...
... ліворуч. Перевантажені операції помістити в потік і взяти з потоку повинні об’являтися як дружні, якщо вони повинні мати прямий доступ до закритих елементів класу з міркувань продуктивності. 2. Розробка власного класу clsString 2.1 Загальний алгоритм вирішення Створимо базовий клас TPString у якому розмістимо мінімальнонеобхідні компоненти, але при цьому цей клас вже буде функці ...
0 комментариев