\bookfoldsheets0Федеральное агентство по образованию РФ

«ДИСКРЕТНАЯ МАТЕМАТИКА»

(КОНСПЕКТ ЛЕКЦИЙ)

 

Преподаватель: профессор, Архипов Игорь Константинович

1.   МНОЖЕСТВА

 

Множество – совокупность элементов, обладающих каким-то одним общим свойством. (Это определение не является строгим, оно лишь показывает особенности построения множеств, т.е. для построения множества важно указать свойство, которым обладают все его элементы).

Если каждому элементу множества можно присвоить номер и этот номер не повторяется, то такое множество называется счетным или конечным.

Если такого номера для каждого элемента не существует, то такое множество называется бесконечным.

Бесконечное множество часто называют континуумом (например: совокупность точек на плоскости).

Если можно пересчитать все число элементов в счетном множестве, то эта сумма называется мощностью множества.

Множества задаются различными способами:

1.   С помощью перечисления всех его элементов.

{0,1,2,3,4,5,6,7,8,9}

2.   Алгоритмическая форма (в виде последовательности или фомул).

а) конечное

М={2;4;6;8} <=> М={m|2n;n-целое;1<=n<=4}

б) бесконечное

А={х| |х-1|<3}



2.   СВОЙСТВА СЧЕТНЫХ МНОЖЕСТВ

1.   Всякое подмножество счетного множества конечно или счетно

Подмножеством множества А называется множество А` все элементы которого принадлежат множеству А

Пример:

2.   Сумма конечного или счетного числа конечных или счетных множеств есть конечное или счетное множество.

3.   Множество всех рациональных чисел счетно.

4.   Алфавитом называется любое непустое множество.

Пустое множество – множество, которое не содержит ни одного элемента.

Элементы множества под названием АЛФАВИТ называют буквами (символами).

Символом в данном алфавите любая конечная последова­тель­ность букв.

 

Для каждого множества А существуют множества, элементами которого являются только все его подмножества.

Такое подмножество называют семейством множеств А или булеаном. (обозначается В(А))

Будем называть вектором (кортежем) упорядоченный набор элементов и обозначать его , заметим, что в отличие от множества, элементы в векторе могут повторяться. Эти элементы называются координатами или проекциями.

Количество элементов в векторе называется его длиной, если в векторе 2 элемента, то двойка, если n элементов, то n-ка.

Теория множеств строится на основе систем аксиом.

1.   Аксиома существования: Существует по крайней мере одно множество.

2.    Аксиома объемности: Если множества А и В составлены из одних и тех же элементов, то они совпадают.

3.   Аксиома объединения: Для произвольных множеств А и В существует множество, элементами которого являются все элементы множества А и все элементы множества В и никакие другие элементы множество не содержит.

4.   Аксиома разности: Для произвольных множеств А и В существует множество, элементами которого являются те и только те элементы множества А, которые не содержатся в множестве В.

5.   Аксиома существования пустого множества: Существует множество не содержащее ни одного элемента.

 

 

 


3.   ОСНОВНЫЕ ОПЕРАЦИИ НАД МНОЖЕСТВАМИ

 

1.   Включение (объединение)

Множество А входит (включено) в множество В, или А является подмножеством В.

Если всякий объект, обладающий свойством , также обладает свойством , то говорят, что свойство  включает свойство , т.е.

2.   Сумма

Сумма множеств А и В есть множество С, включающее в себя все элементы множество А и В.

Объект входит во множество  если он входит во множество А или во множество В.

3.   Пересечение (произведение)

Пересечением множество А и В называется новое множество С. Элементы множества С принадлежат множеству А (обладают его свойствами) и множеству В (обладают его свойствами).


Информация о работе «Дискретная математика»
Раздел: Математика
Количество знаков с пробелами: 12990
Количество таблиц: 1
Количество изображений: 3

Похожие работы

Скачать
34329
6
25

элементы теории нечетких множеств можно применять для решения экономических задач в условиях неопределённости. 1. применение Логических функций   1.1 Применение методов дискретной математики в экономике   При исследовании, анализе и решении управленческих проблем, моделировании объектов исследования и анализа широко используются методы формализированного представления, являющегося предметом ...

Скачать
179431
27
82

... подход к разработке эффективного алгоритма для решения любой задачи – изучить ее сущность. Довольно часто задачу можно сформулировать на языке теории множеств, относящейся к фундаментальным разделам математики. В этом случае алгоритм ее решения можно изложить в терминах основных операций над множествами. К таким задачам относятся и задачи информационного поиска, в которых решаются проблемы, ...

Скачать
14778
4
22

... которой были разработаны в последней четверти 19 века Георгом Кантором. Цель контрольной работы – ознакомится с основными понятиями и методами решения по дискретной математике, уметь применить полученные знания при решении практического задания. Задание 1 Представить с помощью кругов Эйлера множественное выражение . Используя законы и свойства алгебры множеств, упростить заданное ...

Скачать
6003
0
1

в и формальных систем является центральной в дисциплине. В настоящие время от нее возникли ответвления, например, разработка алгоритмических языков программирования.Одной из важнейших проблем в дискретной математики является проблема сложности вычислений.Теория сложности вычислений помогает оценить расход времени и памяти при решении задач на ЭВМ. Теория сложности позволяет выделить объективно ...

0 комментариев


Наверх