7. ПРИНЦИПЫ МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ

 

При вычислении элементов множеств требуется приводить доказательство, по которому вычисляются последующие элементы по предыдущим. Один из алгоритмов этих доказательств – принцип математической индукции.

Этот принцип заключается в следующем:

Пусть при n=1 доказательство очевидно. Принимаем гипотезу, что оно очевидно при n=k, которое не равно 1 (). Тогда, если доказано, что требуемое равенство очевидно при k+1, то равенство доказано при любом n.

8.   ОТОБРАЖЕНИЕ ОТНОШЕНИЯ ФУНКЦИИ

Понятие отображения и функции выражают зависимостью одних переменных величин от других, при этом слово величина может иметь различную смысловую нагрузку. Это может быть элемент любого множества, число, вектор и т.д.

Отображение – множества x во множество y определяется тем, что каждому элементу ставится в соответствие

 - графическое изображение отобра­же­ния, f – обозначение отображения. Закон, который выража­ет­ся или в виде формулы или в виде алгоритма, т.е. последова­тельность действий, которые надо предпринять, чтобы полу­чить зависимость элементов множества y от элементов x. Например: всякая нумерация счетного множества является его отображением на множество натуральных чисел N.

Так как отображение может быть истолковано как соот­ве­тствие, то для того, чтобы показать, что данный элемент x поставлен в соответствие элементу y, пишут  и говорят, что y есть образ элемента x при данном отображении f.

Пусть x` - подмножество множества x

y` - подмножество множества y

тогда

Совокупность элементов множества x, образом которых является y, называется прообразом и обозначается

Рассмотрим частные случаи отображения одного множества в другое.

1.  Если каждый элемент множества Y имеет прообраз, являя­ющийся элементом множества X,то в этом случае отобра­жение f называется сюръективным.

2.  Отображение f называется инъективным, если для каждо­го элемента существует не более одного прообраза, т.е. при любых , если .

Если отображение f сюръективно и инъективно, то оно на­зывается биеткивным или взаимооднозначным.

Рассмотрим на примере три функции, отображающие мно­жество F действительных чисел само на себя:

1)  - инъективна, но не сюръективна т.к. , однако не каждый y имеет прообраз x т.к. y>0

2)  - сюръективна, но не инъектина, т.к. y существует при любом x, однако для образа y существует несколько прообразов, т.к. существует несколько корней кубического уравнения

3)  - биективна, т.к. x однозначно выражается через x и x однозначно выражается через y.

Два множества называются эквивалентными, если между ними можно установить биективное отображение.

ТОГДА:

Подмножество  называется функцией .

Таким образом функцию можно представить в виде графика, причем множество А – область определения функции, а множество В – область значения функции.

Рассмотрим, например, взаимно однозначное отображе­ние множества R на R1, где R1 есть множество всех положи­тельных чисел . Обратным ему будет отображение . Для таких отображений справедливо следующее тождество:

9.   КОМПОЗИЦИЯ

, то их композицией (произведением) называют , причем, если осуществляется композиция, то . В математике такое отображение называют сложной функцией, y – промежуточный аргумент.

Для композиции справедливо следующие отображения:

-     коммутативное -

-     ассоциативное -


Информация о работе «Дискретная математика»
Раздел: Математика
Количество знаков с пробелами: 12990
Количество таблиц: 1
Количество изображений: 3

Похожие работы

Скачать
34329
6
25

элементы теории нечетких множеств можно применять для решения экономических задач в условиях неопределённости. 1. применение Логических функций   1.1 Применение методов дискретной математики в экономике   При исследовании, анализе и решении управленческих проблем, моделировании объектов исследования и анализа широко используются методы формализированного представления, являющегося предметом ...

Скачать
179431
27
82

... подход к разработке эффективного алгоритма для решения любой задачи – изучить ее сущность. Довольно часто задачу можно сформулировать на языке теории множеств, относящейся к фундаментальным разделам математики. В этом случае алгоритм ее решения можно изложить в терминах основных операций над множествами. К таким задачам относятся и задачи информационного поиска, в которых решаются проблемы, ...

Скачать
14778
4
22

... которой были разработаны в последней четверти 19 века Георгом Кантором. Цель контрольной работы – ознакомится с основными понятиями и методами решения по дискретной математике, уметь применить полученные знания при решении практического задания. Задание 1 Представить с помощью кругов Эйлера множественное выражение . Используя законы и свойства алгебры множеств, упростить заданное ...

Скачать
6003
0
1

в и формальных систем является центральной в дисциплине. В настоящие время от нее возникли ответвления, например, разработка алгоритмических языков программирования.Одной из важнейших проблем в дискретной математики является проблема сложности вычислений.Теория сложности вычислений помогает оценить расход времени и памяти при решении задач на ЭВМ. Теория сложности позволяет выделить объективно ...

0 комментариев


Наверх