2.1 Дифференциально-разностные уравнения Колмогорова

В соответствии методом дифференциальных уравнений и рисунком 2.1, составим следующие уравнения


, (2.1.1)

где , .

Воспользуемся следующими формулами:

,

 [7]

Тогда уравнения (2.1.1) запишутся следующим образом

 (2.1.2)

Учитывая то, что некоторые события являются невозможными (они равны нулю), уравнения (2.1.2) примут следующий вид

 (2.1.3)

Разложение функции  в ряд Тейлора, имеет вид

где  - позиция элемента  и  соответственно.

Используя разложение функции  в ряд Тейлора, преобразуем уравнения (2.1.3)

.

Переносим  в левую часть равенства, затем делим обе части на  и устремляем , получим

 (2.1.4)

.

Таким образом, уравнения (2.1.4) и есть искомые уравнения Колмогорова.


Информация о работе «Марковская и полумарковская модели открытой сети с тремя узлами»
Раздел: Математика
Количество знаков с пробелами: 26441
Количество таблиц: 3
Количество изображений: 4

Похожие работы

Скачать
106915
5
18

... вызова – БПОВ (Basic Call Process, ВСР). BCP взаимодействует с другими блоками посредством точек инициации (Point of Initiation, POI) и завершения (Point of Return, POR). Если в процессе обработки вызова встретится одна из точек инициации, то это приводит к определенной последовательности обращений к блокам SIB. По завершении этой последовательности обращений осуществляется воздействие на процесс ...

Скачать
52202
13
13

... из одного состояния в другое и распределение времени пребывания процесса в каждом состоянии (в виде функции распределения F(t) или в виде плотности распределения f(t)) Классификация систем массового обслуживания   В общем случае СМО классифицируется по следующим признакам: ·  закону распределения входного потока ·  числу обслуживающих приборов ·  закону распределения времени обслуживания в ...

0 комментариев


Наверх