2.2 Поиск решения дифференциально-разностных уравнений Колмогорова

Решением уравнений Колмогорова (2.1.4) является:

 (2.2.1)

 .

Проверим найденное решение (2.2.1) непосредственной подстановкой в уравнения (2.1.4), получим

Таким образом, 0=0, то есть решение (2.2.1) удовлетворяет уравнениям (2.1.4).

2.3 Доказательство инвариантности стационарного распределения

Согласно 1.2, для марковской модели сети с тремя узлами получен вид стационарного распределения, который определяется по формуле (1.2.9). При этом времена обслуживания заявок имеют показательное распределение с параметрами  для -ого узла, где  – число заявок в -ой системе, . В соответствии с разделом 2, для полумарковской модели сети с тремя узлами, предполагаем, что длительность обслуживания отдельного требования распределена по произвольному закону. Пусть  – функция распределения времени обслуживания -ым прибором одной заявки. Предполагается, что выполняется условие, определяемое формулой (2.1).

Согласно результату Севастьянова [6] и формуле (2.2.1), стационарное распределение сохраняет форму произведения (инвариантно) и при допущенных допущениях.

Таким образом, доказана инвариантность стационарного распределения открытой сети массового обслуживания с тремя узлами.



Информация о работе «Марковская и полумарковская модели открытой сети с тремя узлами»
Раздел: Математика
Количество знаков с пробелами: 26441
Количество таблиц: 3
Количество изображений: 4

Похожие работы

Скачать
106915
5
18

... вызова – БПОВ (Basic Call Process, ВСР). BCP взаимодействует с другими блоками посредством точек инициации (Point of Initiation, POI) и завершения (Point of Return, POR). Если в процессе обработки вызова встретится одна из точек инициации, то это приводит к определенной последовательности обращений к блокам SIB. По завершении этой последовательности обращений осуществляется воздействие на процесс ...

Скачать
52202
13
13

... из одного состояния в другое и распределение времени пребывания процесса в каждом состоянии (в виде функции распределения F(t) или в виде плотности распределения f(t)) Классификация систем массового обслуживания   В общем случае СМО классифицируется по следующим признакам: ·  закону распределения входного потока ·  числу обслуживающих приборов ·  закону распределения времени обслуживания в ...

0 комментариев


Наверх