4.3 Вычисление стандартных ошибок параметров и выводы о смещенности оценок параметров модели
Стандартные ошибки параметров модели рассчитаем по формуле , , . Для получения стандартной ошибки оценки параметров а0 введем формулу возведения в степень 0,5. И аналогично получим стандартные ошибки оценок параметров а1 и а2. Для проверки полученных ошибок скопируем с итогового листа Регрессия значения ячеек столбца Стандартная ошибка. Значения совпали.
Сравним каждую стандартную ошибку с соответствующим значением оценки параметра с помощью формулы:
Таблица 8 – Расчет стандартных ошибок оценок параметров модели. Выводы о смещении оценок параметров модели
Регрессия | |||||||
По формуле | Стандартная ошибка | Выводы о смещённости оценок параметров модели |
| ||||
0,72406211 | 0,7240621 | 57,47779 | Оценка смещена |
| |||
0,00983242 | 0,0098324 | -92,717 | Оценка не смещена |
| |||
0,00393854 | 0,0039385 | 32,62555 | Оценка смещена |
| |||
5. Проверка гипотез о статистической значимости оценок параметров модели на основе F- и t-критериев
5.1 Проверка адекватности модели по критерию Фишера
Проверку адекватности модели по критерию Фишера проведем по представленному алгоритму.
Шаг 1. Формулирование нулевой и альтернативной гипотез.
, т.е. не один фактор модели не влияет на показатель.
Хотя бы одно значение отменно от нуля, т.е.
Шаг 2. Выбор соответствующего уровня значимости.
Уровнем значимости называется вероятность сделать ошибку 1-го рода, т.е. отвергнуть правильную гипотезу. Величина называется уровнем доверия или доверительной вероятностью.
Выбираем уровень значимости , т.е. доверительная вероятность – Р=0,95
Шаг 3. Вычисление расчетного значения F-критерия.
Расчетное значение F-критерия определяется по формуле:
Для проверки полученного значения скопируем с итогового листа Регрессия расчетное значение F-критерия. Значения совпали
Шаг 4. Определение по статистическим таблицам F-распределения Фишера критического значения F-критерия.
Критическое значение F-критерия находим по статистическим таблицам F-распределения Фишера по соответствующим данным:
- доверительной вероятности Р=0,95;
- степеней свободы
Определяем табличное значение критерия =5,14
Шаг 5. Сравнение рассчетного значения F-критерия с критическим и интерпритация результатов.
Вывод о принятии нулевой гипотезы, т.е. об адекватности модели делаем с помощью встроенной логической функции ЕСЛИ.
Поскольку , то отвергаем нулевую гипотезу про незначимость факторов с риском ошибиться не больше чем на 5% случаев, т.е. с надежностью Р=0,95 можно считать, что принятая модель адекватна статистическим данным и на основе этой модели можно осуществлять экономический анализ и прогнозирование.
... 53951 20 55,04222 1,857778 21 54,61188 2,388125 22 54,44189 -1,74189 23 54,99919 -1,79919 24 53,51879 0,981207 25 54,09761 -2,99761 Вывод: в результате анализа однофакторной эконометрической модели, характеризующей взаимосвязь между долей жителей в трудоспособном возрасте и среднемесячной денежной заработной платой рабочих и служащих, можно отметить, что модель имеет высокую ...
... , что и в литературе встречается указание на то, что одним из свойств производственной функции является прохождение ее графика через начало координат, (9) свидетельствующее о невозможности выпуска продукции без использования производственных ресурсов. Исходя из сказанного, надо признать, что модели производственной функции линейного типа имеют ограниченную область применения. Поэтому в дальнейшем ...
... метод – 10-4-10-6 Микроскопия – 10-4-10-7 Метод фильтрации – 10-5-10-7 Центрифугирование – 10-6-10-8 Ультрацентрифугирование – 10-7-10-9 Ультрамикроскопия – 10-7-10-9 Нефелометрия – 10-7-10-9 Электронная микроскопия – 10-7-10-9 Метод диффузии – 10-7-10-10 Дисперсионный анализ широко используют в различных областях науки и промышленного производства для оценки дисперсности систем ( ...
... регрессией SSR = ∑(ỹ-y)2 = 3990,5; Остатки, необъясненный разброс SSЕ = ∑(ỹ-yi)2 = 1407,25; Общий разброс данных SSY = ∑(yi-y)2 = 5397,85; Для анализа общего качества оценной линейной регрессии найдем коэффициент детерминации: R2 = SSR/SSY = 0.7192; Разброс данных объясняется линейной моделью на 72% и на 28% – случайными ошибками. Вывод: Качество модели хорошее ...
0 комментариев