5.2 Проверка значимости оценок параметров модели по критерию Стьюдента
Проверку гипотезы о значении каждого параметра модели проведем в соответствии с представленным алгоритмом.
Шаг 1. Формулирование нулевой и альтернативной гипотез.
– оценка j-го параметра является статистически незначимой, т.е. j-й фактор никак не влияет на показатель у;
– оценка j-го параметра является статистически значимой, т.е. j-й фактор влияет на показатель у.
Шаг 2. Выбор соответствующего уровня значимости.
Выбираем уровень значимости , т.е. доверительная вероятность – Р=0,95.
Шаг 3. Вычисление расчетного значения t-критерия.
Расчетное значение t-критерия определяется по формуле:
Во время анализа двухфакторной модели расчетные значения t-критерия определяются по формулам:
=-3,2333 =3,4264 =4,9937
Для проверки полученного значения t-критерия скопируем с итогового листа Регрессия значения ячеек столбца t-статистика. Значения совпали.
Шаг 4. Определение по статистическим таблицам t-распределения Стьюдента критического значения t-критерия.
Критическое значение t-критерия находим по статистическим таблицам t-распределения Стьюдента по соответствующим данным:
- доверительной вероятности Р=0,95;
- степеней свободы
Определяем табличное значение критерия =2,45
Шаг 5. Сравнение рассчетного значения t-критерия с критическим и интерпритация результатов.
Выводы о принятии нулевой гипотезы, т.е. о значимости оценок параметров , и делаем с помощью встроенной логической функции ЕСЛИ. С надежностью Р=0,95 можно считать, что
– оценки 1-го и 2-го параметров модели значимые, т.е. оба фактора существенно влияют на показатель;
– оценка 0-го параметра модели не является статистически значимой.
Таблица 9 – Проверка гипотез о статистической значимости оценок параметров модели на основе F- и t – критериев
F-критерий Фишера | |||
По формуле | Регресия | Р=0.95 | |
F | 2,45 | ||
10,4997302 | 10,499730 | Модель адекватна |
t-критерий Стьюдента |
| |||
По формуле | Регресия | Р=0.95 | ||
t-статистика | 5,14 | |||
1,73980232 | 1,739802 | а0 | Параметр не значимый | |
-1,0785514 | -1,07855 | а1 | Параметр не значимый | |
3,06508252 | 3,06508 | а2 | Параметр не значимый |
... 53951 20 55,04222 1,857778 21 54,61188 2,388125 22 54,44189 -1,74189 23 54,99919 -1,79919 24 53,51879 0,981207 25 54,09761 -2,99761 Вывод: в результате анализа однофакторной эконометрической модели, характеризующей взаимосвязь между долей жителей в трудоспособном возрасте и среднемесячной денежной заработной платой рабочих и служащих, можно отметить, что модель имеет высокую ...
... , что и в литературе встречается указание на то, что одним из свойств производственной функции является прохождение ее графика через начало координат, (9) свидетельствующее о невозможности выпуска продукции без использования производственных ресурсов. Исходя из сказанного, надо признать, что модели производственной функции линейного типа имеют ограниченную область применения. Поэтому в дальнейшем ...
... метод – 10-4-10-6 Микроскопия – 10-4-10-7 Метод фильтрации – 10-5-10-7 Центрифугирование – 10-6-10-8 Ультрацентрифугирование – 10-7-10-9 Ультрамикроскопия – 10-7-10-9 Нефелометрия – 10-7-10-9 Электронная микроскопия – 10-7-10-9 Метод диффузии – 10-7-10-10 Дисперсионный анализ широко используют в различных областях науки и промышленного производства для оценки дисперсности систем ( ...
... регрессией SSR = ∑(ỹ-y)2 = 3990,5; Остатки, необъясненный разброс SSЕ = ∑(ỹ-yi)2 = 1407,25; Общий разброс данных SSY = ∑(yi-y)2 = 5397,85; Для анализа общего качества оценной линейной регрессии найдем коэффициент детерминации: R2 = SSR/SSY = 0.7192; Разброс данных объясняется линейной моделью на 72% и на 28% – случайными ошибками. Вывод: Качество модели хорошее ...
0 комментариев