1.2 Оценка тесноты связи между показателем Y и факторами Х1 и Х2, а также межу факторами. (Диаграмма рассеяния)
Связь обратная
Связь обратная
Связь тесная прямая
Прозноз | ||
1) Отношение Х1 и У | ||
r=-0,5 | ||
2) Отношение Х1 и Х2 | ||
r=-0,4 | ||
3) Отношение У и Х2 | ||
r=0,5 |
1.2.1 Парные коэффициенты корреляции, корреляционная матрица
Для оценки тесноты связи между показателем Y и факторами Х1 и Х2, а также между факторами вычисляем парные коэффициенты корреляции, а потом составляем корреляционную матрицу, учитывая ее особенности:
– корреляционная матрица является симметричной;
– на главной диагонали размещены единицы.
Парные коэффициенты корреляции вычисляем по формулам:
– среднее квадратическое отклонение показателя Y;
– среднее квадратическое отклонение фактора X1;
– среднее квадратическое отклонение фактора X2;
– дисперсия показателя Y;
– дисперсия показателя X1;
– дисперсия показателя X2;
– коэффициент ковариации признаков Y и Х1;
– коэффициент ковариации признаков Y и Х2;
– коэффициент ковариации признаков X1 и Х2;
Таблица 2 – Расчет парных коэффициентов корреляции
По формуле | Мастер функций | ||
Дисперсия У | Ср. кв. отклон У | Дисперсия У | Ср. кв. отклон У |
0,089133333 | 0,298552061 | 0,089133333 | 0,298552061 |
Дисперсия Х1 | Ср. кв. отклон Х1 | Дисперсия Х1 | Ср. кв. отклон Х1 |
50,16666667 | 7,08284312 | 50,16666667 | 7,08284312 |
Дисперсия Х2 | Ср. кв. отклон Х2 | Дисперсия Х2 | Ср. кв. отклон Х2 |
312,6550617 | 17,68205479 | 312,6550617 | 17,68205479 |
Ковариация УХ1 | Ковариация УХ1 | ||
-1,386333333 | -1,386333333 | ||
Ковариация УХ2 | Ковариация УХ2 | ||
4,524851852 | 4,524851852 | ||
Ковариация Х1Х2 | Ковариация Х1Х2 | ||
-70,76962963 | -70,76962963 |
Коэффициенты парной корреляции
rух1 | -0,655601546 | rух1 | -0,655601546 | |
rух2 | 0,857139597 | rух2 | 0,857139597 | |
rух1х2 | -0,565075617 | rух1х2 | -0,565075617 |
Корреляционная матрица |
| |
1 | -0,655601546 | 0,857139597 |
-0,655601546 | 1 | -0,565075617 |
0,857139597 | -0,565075617 | 1 |
... 53951 20 55,04222 1,857778 21 54,61188 2,388125 22 54,44189 -1,74189 23 54,99919 -1,79919 24 53,51879 0,981207 25 54,09761 -2,99761 Вывод: в результате анализа однофакторной эконометрической модели, характеризующей взаимосвязь между долей жителей в трудоспособном возрасте и среднемесячной денежной заработной платой рабочих и служащих, можно отметить, что модель имеет высокую ...
... , что и в литературе встречается указание на то, что одним из свойств производственной функции является прохождение ее графика через начало координат, (9) свидетельствующее о невозможности выпуска продукции без использования производственных ресурсов. Исходя из сказанного, надо признать, что модели производственной функции линейного типа имеют ограниченную область применения. Поэтому в дальнейшем ...
... метод – 10-4-10-6 Микроскопия – 10-4-10-7 Метод фильтрации – 10-5-10-7 Центрифугирование – 10-6-10-8 Ультрацентрифугирование – 10-7-10-9 Ультрамикроскопия – 10-7-10-9 Нефелометрия – 10-7-10-9 Электронная микроскопия – 10-7-10-9 Метод диффузии – 10-7-10-10 Дисперсионный анализ широко используют в различных областях науки и промышленного производства для оценки дисперсности систем ( ...
... регрессией SSR = ∑(ỹ-y)2 = 3990,5; Остатки, необъясненный разброс SSЕ = ∑(ỹ-yi)2 = 1407,25; Общий разброс данных SSY = ∑(yi-y)2 = 5397,85; Для анализа общего качества оценной линейной регрессии найдем коэффициент детерминации: R2 = SSR/SSY = 0.7192; Разброс данных объясняется линейной моделью на 72% и на 28% – случайными ошибками. Вывод: Качество модели хорошее ...
0 комментариев