Выводы о том, являются ли факторы ведущими и возможной мультиколлнеарности

Построение и анализ однофакторной эконометрической модели
Общий вид линейной однофакторной модели и её оценки Оценка параметров модели методом 1МНК Спецификация модели Оценка тесноты связи между показателем Y и факторами Х1 и Х2, а также межу факторами. (Диаграмма рассеяния) Коэффициенты частичной корреляции Выводы о том, являются ли факторы ведущими и возможной мультиколлнеарности Оценка параметров модели 1МНК в матричной форме Коэффициенты множественной детерминации и корреляции для оцененной модели Разложение коэффициента множественной детерминации на коэффициенты отдельной детерминации Вычисление стандартных ошибок параметров и выводы о смещенности оценок параметров модели Проверка значимости оценок параметров модели по критерию Стьюдента Построение интервалов доверия для параметров модели Доверительный интервал для прогноза рентабельности Идентификация переменных Исследование наличия мультиколлинеарности по алгоритму Феррара-Глобера
38850
знаков
41
таблица
9
изображений

1.2.3 Выводы о том, являются ли факторы ведущими и возможной мультиколлнеарности

С помощью полученных корреляционной матрицы и коэффициентов частичной корреляции можно сделать выводы о значимости факторов и проверить факторы на мультиколлинеарность – линейную зависимость или сильную корреляцию.

1) Поскольку коэффициент парной корреляции между затратами оборота и рентабельностью rух1 = -0,655601546 и соответствующий коэффициент частичной корреляции ryx1 (х2) = – 0,402981473, это значит, что затраты оборота имеют обратное среднее влияние на рентабельность.

2) Поскольку коэффициент парной корреляции между трудоемкостью и рентабельностью rух2=0,857139597, а соответствующий коэффициент частичной корреляции rух2 (х1)= 0,781189003, то это свидетельствует о том, что трудоемкость существенно влияет на рентабельность.

3) Поскольку коэффициент парной корреляции между рентабельностью и затратами оборота = -0,565075617, а соответствующий коэффициент частичной корреляции rх1х2 (у) = -0,005029869 то можно сказать, что существует средняя обратная корреляционная зависимость.

3. Общий вид линейной двухфакторной модели и её оценка в матричной форме

В общем виде многофакторная линейная эконометрическая модель записывается так:

В матричной форме модель и ее оценка будут записаны в виде:

  и ,

где У – вектор столбец наблюдаемых значений показателя;

У – вектор столбец оцененных значений фактора;

Х – матрица наблюдаемых значения факторов;

А – вектор столбец невидимых параметров;

А – вектор столбец оценок параметров модели;

е – вектор столбец остатков (отклонений).

2,32 1,0 38,8 114
2,19 1,0 39,9 101,1
2,83 1,0 30,1 153,8
2,75 1,0 31,7 146
Y= 2,59 X= 1,0 17,2 124,8
2,27 1,0 39,7 103,6
2,05 1,0 36,9 119
1,95 1,0 38,2 108,7
2,08 1,0 40,1 106,5
1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
Xtrans= 38,8 39,9 30,1 31,7 17,2 39,7 36,9 38,2
114,0 101,1 153,8 146,0 124,8 103,6 119,0 108,7

Информация о работе «Построение и анализ однофакторной эконометрической модели»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 38850
Количество таблиц: 41
Количество изображений: 9

Похожие работы

Скачать
10865
11
21

... 53951 20 55,04222 1,857778 21 54,61188 2,388125 22 54,44189 -1,74189 23 54,99919 -1,79919 24 53,51879 0,981207 25 54,09761 -2,99761 Вывод: в результате анализа однофакторной эконометрической модели, характеризующей взаимосвязь между долей жителей в трудоспособном возрасте и среднемесячной денежной заработной платой рабочих и служащих, можно отметить, что модель имеет высокую ...

Скачать
29565
0
12

... , что и в литературе встречается указание на то, что одним из свойств производственной функции является прохождение ее графика через начало координат, (9) свидетельствующее о невозможности выпуска продукции без использования производственных ресурсов. Исходя из сказанного, надо признать, что модели производственной функции линейного типа имеют ограниченную область применения. Поэтому в дальнейшем ...

Скачать
75320
5
6

... метод – 10-4-10-6 Микроскопия – 10-4-10-7 Метод фильтрации – 10-5-10-7 Центрифугирование – 10-6-10-8 Ультрацентрифугирование – 10-7-10-9 Ультрамикроскопия – 10-7-10-9 Нефелометрия – 10-7-10-9 Электронная микроскопия – 10-7-10-9 Метод диффузии – 10-7-10-10 Дисперсионный анализ широко используют в различных областях науки и промышленного производства для оценки дисперсности систем ( ...

Скачать
21813
11
2

... регрессией SSR = ∑(ỹ-y)2 = 3990,5; Остатки, необъясненный разброс SSЕ = ∑(ỹ-yi)2 = 1407,25; Общий разброс данных SSY = ∑(yi-y)2 = 5397,85; Для анализа общего качества оценной линейной регрессии найдем коэффициент детерминации: R2 = SSR/SSY = 0.7192; Разброс данных объясняется линейной моделью на 72% и на 28% – случайными ошибками. Вывод: Качество модели хорошее ...

0 комментариев


Наверх