8 Второй алгоритм для начала счета методом прогонки С.К.Годунова
Этот алгоритм обсчитан на компьютерах в кандидатской диссертации.
Этот алгоритм требует дополнения матрицы краевых условий U до квадратной невырожденной:
Начальные значения Y(0), Y(0), Y(0), Y(0), Y*(0) находятся из решения следующих систем линейных алгебраических уравнений:
∙ Y*(0) = ,
∙ Y(0) = , где i = , , , ,
где 0 – вектор из нулей размерности 4х1.
9 Замена метода численного интегрирования Рунге-Кутта в методе прогонки С.К.Годунова
Эта замена формул Рунге-Кутта на формулу теории матриц обсчитана на компьютерах в кандидатской диссертации.
В методе С.К.Годунова как показано выше решение ищется в виде:
Y(x) = Y(x) ∙ c + Y*(x).
На каждом конкретном участке метода прогонки С.К.Годунова между точками ортогонализации можно вместо метода Рунге-Кутта пользоваться теорией матриц и выполнять расчет через матрицу Коши:
Y(x) = K(x- x) ∙Y(x).
Так выполнять вычисления быстрее, особенно для дифференциальных уравнений с постоянными коэффициентами.
И аналогично через теорию матриц можно вычислять и вектор Y*(x) частного решения неоднородной системы дифференциальных уравнений. Или для этого вектора отдельно можно использовать метод Рунге-Кутта, то есть можно комбинировать теорию матриц и метод Рунге-Кутта.
10 Метод половины констант
Этот метод пока не обсчитан на компьютерах.
Выше было показано, что решение системы линейных обыкновенных дифференциальных уравнений можно искать в виде только с половиной возможных векторов и констант. Была приведена формула для начала вычислений:
Y(0) = М∙с + ∙ .
Из теории матриц известно, что если матрица ортонормирована, то её обратная матрица есть её транспонированная матрица. Тогда последняя формула приобретает вид:
Y(0) = М∙с + U∙u
или
Y(0) = U∙u + М∙с
или
Y(0) = ∙ ,
Таким образом записана в матричном виде формула для начала счета с левого края, когда на левом крае удовлетворены краевые условия.
Далее запишем V∙Y(1) = v и Y(1) = K(1←0) ∙Y(0) + Y*(1←0) совместно:
V∙ [ K(1←0) ∙Y(0) + Y*(1←0) ] = v
V∙ K(1←0) ∙Y(0) = v - V∙Y*(1←0)
и подставим в эту формулу выражение для Y(0):
V∙ K(1←0) ∙ ∙ = v - V∙Y*(1←0).
V∙ K(1←0) ∙ ∙ = p.
Таким образом мы получили выражение вида:
D ∙ = p,
где матрица D имеет размерность 4х8 и может быть естественно представлена в виде двух квадратных блоков размерности 4х4:
∙ = p.
Тогда можем записать:
D1∙ u + D2 ∙ c = p.
Отсюда получаем, что:
c = D2 ∙ ( p - D1∙ u )
Таким образом, искомые константы найдены.
Далее показано как применять этот метод для решения «жестких» краевых задач.
Запишем
V∙ K(1←0) ∙ ∙ = p.
совместно с K(1←0) = K(1←x2) ∙ K(x2←x1) ∙ K(x1←0) и получим:
V∙ K(1←x2) ∙ K(x2←x1) ∙ K(x1←0) ∙ ∙ = p.
Эту систему линейных алгебраических уравнений можно представить в виде:
[ V∙ K(1←x2) ] ∙ { K(x2←x1) ∙ K(x1←0) ∙ ∙ } = p.
[ матрица ] ∙ { вектор } = вектор
Эту группу линейных алгебраических уравнений можно подвергнуть построчному ортонормированию, которое сделает строчки [матрицы] ортонормированными, {вектор} затронут не будет, а вектор получит преобразование. То есть получим:
[ V∙ K(1←x2) ] {K(x2←x1) ∙ K(x1←0) ∙ } =p.
И так далее.
В итоге поочередного вычленений матриц слева из вектора и ортонормирования получим систему:
D ∙ = p,
Отсюда получаем, что:
c = D2 ∙ (p - D1∙ u)
Таким образом, искомые константы найдены.
... матрицы в экспоненте. А затем матрицы Коши, вычисленные на малых участках, перемножаются: , где матрицы Коши приближенно вычисляются по формуле: , где . 2. Метод решения жестких краевых задач без ортонормирования – метод сопряжения участков, выраженных матричными экспонентами. Разделим интервал интегрирования краевой задачи, например, на 3 участка. Будем иметь точки (узлы), ...
... . 4. Какие основные факторы нужно определить прежде, чем формировать инвестиционный портфель клиента? 5. Опишите простую структуру инвестиционного портфеля. ВВЕДЕНИЕ РАЗВИТИЕ РЫНКА ЦЕННЫХ БУМАГ В РОССИИ И ЗАДАЧИ РЕГУЛИРОВАНИЯ Рынок ценных бумаг в России начал свое формирование в первой половине 1991 г. после принятия известного Постановления Совета министров РСФСР ¹ 601 от 25 ...
... . А организованная преступность ещё имеет причины общие с неорганизованной преступностью. 3.3 Методы борьбы с организованной преступностью.21 В основе предупреждения организованной преступности лежат общесоциальные и экономические меры.Прежде всего нужны эффективные законы, отвечающие характеру современной преступности. Сегодняшний уголовный закон ...
... на поздних стадиях начинают проявляться ряд факторов объективного, природного характера, осложняющие ситуацию в решении парафиновой проблемы и снижающие эффективность традиционных мероприятий. 3.3 Методы используемые в НГДУ “Нурлатнефть” по предотвращению отложений АСПО 3.3.1 Механические методы борьбы с АСПО и технология работ при их применении Группа механических методов борьбы с ...
0 комментариев