4 Визначення кількості перетинів корисного сигналу з нульовим рівнем за допомогою методики для квантованого у часі сигналУ
4.1 Визначення дискретної частоти за допомогою перетинів нульового значення
В даному розділі будуть наведені методи ті, що використовують ітеративні фільтраційні процедури для визначення частот сигналів, схованих у шумі компонент. Подана методика використовує параметричну фільтрацію для рекурсивного визначення частот дискретних спектральних компонент.
Визначення частоти – класична задача аналізу часових рядів. Майже сотні років періодограми широко застосовувалися для аналізу та визначення спектрів. Швидке перетворення Фур’є (FFT), що являє собою ефективний алгоритм для оцінки періодограм у частотах Фур’є, підтримує популярність цього важливого інструмента. Але на протязі більш ніж десяти останніх років багато авторів пропонували методи ітеративної фільтрації для визначення частот дискретних гармонік [8, 11-14].
Корисна математична модель, так саме, як і та, що ми використовуємо у цьому прикладі, це наступна суміш сигналів стаціонарного процесу,
, (4.1)
де, - дискретні значення часу;
А та В всі не корельовано, - математичне відхилення, та - дисперсія.
Взагалі, приймаємо - підкрашений стаціонарний шум з нульовим середнім значенням і дисперсією , незалежною від А та В. Шум, приймаємо, має абсолютно неперервну спектральну функцію зі спектральною щільністю , . Для нашої мети ми приймаємо, що {Zt} – Гаусів процес. Але Гаусовість не є необхідною для параметричної фільтрації за методом Яковітца [16]. Також покажемо, що частота для нас є низка упорядкованих констант в межах (0,) [15],
, (4.2)
Загальна задача це визначити частоти , використовуючи кінцеву довжину реалізації (спостереження) з часового ряду Z1, Z2, ...,ZN.
Іншими словами, наша основна стратегія це фільтрувати спостереження Z1, Z2, ...,ZN за допомогою фільтру з параметричного сімейства лінійних фільтрів, спостерігати статистику перетинів нуля виходу фільтру, а потім обирати інший фільтр (зміною параметра) з сімейства на базі статистики, що спостерігається. При деяких умовах ця ітеративна процедура сходиться і точне значення частоти може бути отримане.
4.2 Очікуване число перетинів нуля Гаусова процесу
Нижче подано формули для визначення очікуваної кількості перетинів нуля Гаусова процесу. Наведемо обидва випадки: безперервного та дискретного часу.
Якщо стаціонарний Гаусів процес {Zt}, для , з нормалізованою автокореляційною функцією має дуже гладку форму, що середнє число перетинів нуля за одиницю часу, дорівнює за формолою Райса [4].
, (4.3)
де D – число перетинів нуля у реалізації {Zt} для t у одиничному інтервалі [0, 1];
є друга похідна нормалізованої автокореляційної функції від {Zt} у нулі.
Ялвісакер в 1965 довів формулу Райса строго при пом’якшуючих умовах і показав, що очікувана кількість перетинів нулів скінченна якщо, і тільки якщо, автокореляційна функція двічі може бути диференційована в точці .
Аналогічна формула для дискретного часу, для процесу з нульовим середнім, для стаціонарної Гаусової послідовності {Zк}, була отримана багатьма авторами [7] і виглядає як:
, (4.4)
або, еквівалентно, в інверсній формі:
, (4.5)
де D1 – число змін знаків або перетинів нуля у реалізаціях Z1, ...,ZN;
- кореляція послідовності {Zк};
- очікувана число перетинів нуля при дискретному часі.
Ця формула (4.5) має назву – косинусна формула. Спостерігаємо, що через стаціонарність очікуване число перетинів нуля - не залежить від N. Взагалі повинен бути кореляцією, див. Кедем (1991). Оскільки лінійна фільтрація Гаусова процесу дає результат Гаусів процес, косинусна формула придатна для фільтрованого процесу, де кореляційний коефіцієнт і число перетинів нуля фільтрованого процесу використано у косинус ній формулі (4.5). Для точності, нехай буде вихід у момент t з лінійного з незмінними у часі параметрами фільтру La, що був застосований до процесу {Zt}. Використовуючи косинусну формулу (4.5) і спектральне подання для стаціонарних процесів, коефіцієнти кореляції першого порядку фільтрованого процесу отримаємо вираз [15]:
, (4.6)
де Da – число перетинів нуля в {La(Z)1, ...,La(Z)N,};
- функція спектрального розподілу процесу {Zt};
- квадрат коефіцієнту передачі фільтру La.
Перетини нуля Da фільтрованого часового ряду називаємо “Перетини вищого порядку” або НОС [7].
Для даного з нульовим середнім часового ряду {Zк} і сімейства параметричних фільтрів з пространством параметрів , , відповідає НОС сімейство помічено як .
0 комментариев