3. Синтезируют полусумматор на элементах И, ИЛИ, НЕ (рис.5.18).

Рис.5.18 Полусумматор на элементах И, ИЛИ, НЕ

4. Для синтеза схемы на элементах И-НЕ используют основное соотношение булевой алгебры: , поэтому

.

Применяют закон Де Моргана:

.

Равенство не изменится, если к сомножителю  прибавить , а к сомножителю  - , т.к. , :

,

.

Вновь применяют закон Де Моргана:

,

.

Полученные соотношения подставляют в исходное выражение:

.

5. Функциональная схема сумматора на элементах И-НЕ (рис. 5.19).

Рис. 5.19 Сумматор на элементах И-НЕ

 

6. Для синтеза схемы на элементах ИЛИ-НЕ представляют логическую функцию в форме СКНФ путем записи “по нулям”:

7. Проводят преобразование

8. Функциональная схема полусумматора на элементах ИЛИ-НЕ (рис.5.20).


Рис.5.20 Полусумматор на элементах ИЛИ-НЕ

 

Схемы на элементах ИЛИ-НЕ и И-НЕ оказалась проще - содержит 5 логических элементов, а на элементах И, ИЛИ, НЕ - 6.

Пример 5.6. Составить схему полного сумматора, используя полусумматоры.

Решение 1. Полный сумматор осуществляет сложение трех цифр: двух цифр  и , принадлежащих одному разряду складываемых чисел, а также цифры переноса из предыдущего разряда . В результате суммирования этих трех цифр получается сумма  и цифра переноса в старший разряд . Таким образом, это устройство с тремя входами и двумя выходами.

Полусумматоры имеют два входа для  и , и два выхода для  и .

В соответствии с сочетательным законом:

т.е. можно сначала сложить две цифры  и, а затем к промежуточной сумме  прибавить .

Поэтому полный сумматор можно представить как объединение двух полусумматоров.

Первый полусумматор служит для сложения двух цифр  и  и обеспечивает выход промежуточной суммы  и переноса .

Второй полусумматор складывает промежуточную сумму  с цифрой переноса из предыдущего разряда , формирует перенос  и сумму . При этом

Из анализа таблицы истинности для полусумматора следует, что при сложении трех цифр двумя полусумматорами цифра переноса может образоваться только в одном полусумматоре:  или . Поэтому для получения  эти переносы следует объединить логической ячейкой ИЛИ:

.

Это выражение совпадает с полученным ранее для полного сумматора.


Информация о работе «Основы анализа и синтеза комбинационных логических устройств»
Раздел: Информатика, программирование
Количество знаков с пробелами: 75776
Количество таблиц: 73
Количество изображений: 44

Похожие работы

Скачать
30399
31
10

... D=1- W3W4(W1W5W6+ W7+ W1W8+ W2W6 W7+ W2W7+2W2W8+ 1)+ W5W6(W3W4(W7+ W1W5W6+ W2W7+ W2W8+1)-1)   Для x1 Для x4 Для y Для х13 Задание 2. Синтез комбинационных схем. 2.1 Определение поставленной задачи Устройство, работа которого может быть представлена на языке алгебры высказываний, принято называть логическим. Пусть такое устройство имеет n ...

Скачать
25661
0
7

... порядка рис.7,б, которая хуже схемы рис.7,а по характеристикам быстродействия и сложности. Ухудшение характеристик оправдывается только возможностью реализации схемы на заданных стандартных элементах.   8. Комбинационные схемы Логическая схема (рис.8) с n входами и k выходами реализует систему переключательных функций y0 ...yk-1. Каждая функция yi(x0 ...xk-1) однозначно соответствует ...

Скачать
26877
0
0

... одно состояние из множества А, каждой строке – один входной сигнал из множества Z. На пересечении строки и столбца в таблице переходов, записывается состояние as, в которое должен перейти автомат из состояния am, под действием входного сигнала zf, т.е. as = σ(am, zf). На пересечении строки и столбца в таблице выходов записывается выходной сигнал wg, выдаваемый автоматом в состоянии am при ...

Скачать
47833
11
7

... к утверждению выводимости формулы Применение логики высказываний к анализу математических доказательств Ни у кого не возникает сомнения в том, что математические доказательства являются примерами строгих логических рассуждений. Аппарат логики высказываний позволяет нам прояснить структуру доказательств многих математических утверждений. Рассмотрим с точки зрения логики высказываний ...

0 комментариев


Наверх