4.4 Вопросы для самопроверки

1) Чем отличается кортеж от обычного множества?

2) Приведите пример использования кортежей в программировании.

3. Какие операции над множествами Вы знаете?

4) Какой способ существует для графического изображения множеств?

5) Приведите пример универсального множества, которое используется в данной практической работе.

6) Какие операции (логические связки) из алгебры логики Вы знаете?

7) Возможно ли провести аналогию между операциями над множествами и логическими операциями?

8) Какое правило используется при построении СДНФ логической функции?

9) Какое правило используется при построении СКНФ логической функции?

10) Каков алгоритм перевода числа из десятичной системы счисления в двоичную систему счисления?

11) Почему логические функции и логические переменные часто называют двоичными?

12) Какая связь существует между логическими функциями и функционированием компьютера, отдельных его устройств?

 


Практическая работа № 5. Исследование логических функций

Цель работы: изучение существующих форм представления логических функций. Построение совершенных нормальных форм логических функций. Построение таблиц истинности и арифметических моделей логических функций в приложениях на Delphi.

Примечание: все теоретические сведения, необходимые для выполнения данной работы, содержатся в [25], в лекциях и в материалах семинарских занятий.

 

5.1 Задание к работе

1. Используя средства Excel и Delphi, построить таблицы истинности заданных логических функций, если требуется, то предварительно упростить выражения, используя законы алгебры логики и следствия из них.

2. Используя средства Excel и Delphi, построить арифметические модели заданных логических функций.

3. Представить заданные логические функции в виде СДНФ, СКНФ и СПНФ.

4. Построить логические функциональные схемы для заданных логических функций F1 и F2.

5. Сделать выводы.

 

5.2 Практическая часть

 

5.2.1 Пример выполнения

Задание: Построить таблицу истинности, СДНФ, СКНФ, СПНФ и логические функциональные схемы для данных логических функций:

 

F1=

F2=

Код программы построения таблицы истинности логический функций:

Procedure TForml. ButtonlClick (Sender: TObject);

var xl, x2, x3:boolean; i:byte;

a1, a2, a3: string;

begin

Stringgridl. Cells [l, 0]:='xl';

Stringgridl. Cells [2,0]:='x2';

Stringgridl. Cells [3,0]:='x3';

Stringgrid1. Cells [4,0]:=F1';

Stringgridl. Cells [5,0]:='F2';

for i:=l to 8 do begin Stringgrid1. Cells [0, i]:=inttostr (i‑1);

if i<=4 then Stringgridl. Cells [l, i]:=’0’ else Stringgridl. Cells [l, i]:=1;

if (i<=2) or (i=5) or (i=6) then Stringgridl. Cells [2, i]:='0’ else Stringgridl. Cells [2, i]:=' 1';

if (i mod 2 >0) then Stringgridl. Cells [3, i]:='0' else Stringgridl. Cells [3, i]:=1; end;

for i:=l to 8 do begin

x1:=strtobool (Stringgrid 1. Cells [1, i]);

x2:=strtobool (Stringgridl. Cells [2, i]);

x3:=strtobool (Stringgridl. Cells [3, i]);

if (x2 and x3) or (not(xl) and not(x2)) or (x3 and not(xl)) then

Stringgridl. Cells [4, i]:=’1’ else Stringgridl. Cells [4, i]:='0';

if (x2 and x3) or (not(xl) and not(x2) and not(x3)) then Stringgridl. Cells [5, i]:=1 else Stringgridl. Cells [5, i]:='0'; end; end;


Рисунок 5.1 – Форма с результатами

МДНФ:

F1 =

F2 =

МКНФ:

F1 =

F2 =

СПНФ:

F1 =

F2 =

Рисунок 5.2 – Логическая схема для МКНФ функции F1

 


5.2.2 Варианты заданий

1)         Заданы логические функции: F1= 1 на наборах 0, 3 и

2)         Заданы логические функции: F1= 1 на наборах 0, 1, 3 и

3)         Заданы логические функции: F1= 1 на наборах 3, 7 и

4)         Заданы логические функции: F1= 1 на наборах 0, 1, 3, 7 и

5)         Заданы логические функции: F1= 1 на наборах 0,1,2,3,7 и

6)         Заданы логические функции: F1= 1 на наборах 2,5,6 и

7)         Заданы логические функции: F1= 1 на наборах 0, 2,5,7 и

8)         Заданы логические функции: F1= 1 на наборах 0, 1,3 и

9)         Заданы логические функции: F1= 1 на наборах 3,4,6,7 и

10)      Заданы логические функции:  и

11)      Заданы логические функции:  и

12)      Заданы логические функции:  и

13)      Заданы логические функции:  и

14)      Заданы логические функции:  и

15)      Заданы логические функции:  и

16)      Заданы логические функции:  и

17)      Заданы логические функции:  и

18)      Заданы логические функции:  и

19)      Заданы логические функции:  и

20)      Заданы логические функции:  и

21)      Заданы логические функции:  и

22)     

23)      Заданы логические функции:  и

24)      Заданы логические функции:  и

25)      Заданы логические функции:  и

26)      Заданы логические функции:  и

27)      Заданы логические функции:  и

28)      Заданы логические функции:  и

29)      Заданы логические функции:  и

30)      Заданы логические функции:  и

31)      Заданы логические функции:  и

32)      Заданы логические функции: F1=1 на наборах 4,5,7 и

33)      Заданы логические функции: F1=0 на наборах 2,4 и

34)      Заданы логические функции:  и

35)      Заданы логические функции:  и

36)      Заданы логические функции:  и

37)      Заданы логические функции:  и

 


Информация о работе «Основы дискретной математики»
Раздел: Информатика, программирование
Количество знаков с пробелами: 179431
Количество таблиц: 27
Количество изображений: 82

Похожие работы

Скачать
11313
1
5

... Е и множество и мы рассматриваем все его подмножества, то множество Е называется униварсельным. Пример: Если за Е взять множество книг то его подмножества: художественные книги, книги по математике, физики, физики … Если универсальное множество состоит из n элементов, то число подмножеств = 2n. Если , состоящее из элементов E, не принадлежащих А, называется дополненным. Множество можно задать: ...

Скачать
6003
0
1

в и формальных систем является центральной в дисциплине. В настоящие время от нее возникли ответвления, например, разработка алгоритмических языков программирования.Одной из важнейших проблем в дискретной математики является проблема сложности вычислений.Теория сложности вычислений помогает оценить расход времени и памяти при решении задач на ЭВМ. Теория сложности позволяет выделить объективно ...

Скачать
14778
4
22

... которой были разработаны в последней четверти 19 века Георгом Кантором. Цель контрольной работы – ознакомится с основными понятиями и методами решения по дискретной математике, уметь применить полученные знания при решении практического задания. Задание 1 Представить с помощью кругов Эйлера множественное выражение . Используя законы и свойства алгебры множеств, упростить заданное ...

Скачать
34329
6
25

элементы теории нечетких множеств можно применять для решения экономических задач в условиях неопределённости. 1. применение Логических функций   1.1 Применение методов дискретной математики в экономике   При исследовании, анализе и решении управленческих проблем, моделировании объектов исследования и анализа широко используются методы формализированного представления, являющегося предметом ...

0 комментариев


Наверх