1.1 Метод дихотомии

В этом методе точки x1 и х2 располагаются близко к середине очередного отрезка [а; b], т.е:

 , (2.11)

где d > 0 – малое число. При этом отношение длин нового и исходного отрезков


близко к 1/2, этим и объясняется название метода.

Отметим, что для любых точек x1 и х2 величина t > 1/2, поэтому указанный выбор пробных точек объясняется стремлением обеспечить максимально возможное относительное уменьшение отрезка на каждой итерации поиска х*.

В конце вычислений по методу дихотомии в качестве приближенного значения х* берут середину последнего из найденных отрезков [а; b], убедившись предварительно, что достигнуто неравенство

.

Опишем алгоритм метода деления отрезка пополам.

Шаг 1. Определить x1 и х2 по формулам (2.11). Вычислить f (x1) и f (x2).

Шаг 2. Сравнить f (x1) и f (x2). Если , то перейти к отрезку [а; x2], положив b = x2 , иначе – к отрезку [x1; b], положив а = x1 .

Шаг 3. Найти достигнутую точность

 

Если , то перейти к следующей итерации, вернувшись к шагу 1. Если , то завершить поиск х*, перейдя к шагу 4.

Шаг 4. Положить


.

Замечания:

1. Число d из (2.11) выбирают на интервале (0;2e) с учетом следующих соображений:

а) чем меньше d, тем больше относительное уменьшение длины отрезка на каждой итерации, т.е. при уменьшении d достигается более высокая скорость сходимости метода дихотомии;

б) при чрезмерно малом d сравнение значений f (x) в точках x1 и х2 , отличающихся на величину d, становится затруднительным. Поэтому выбор d должен быть согласован с точностью определения f (x) и с количеством верных десятичных знаков при задании аргумента х.

В таблице 1 приведено решение задания по варианту.

Таблица 1 - Метод дихотомии

№ шага x1 x2 F(x1) F(x2) а b

1 3.29 3.31 --3.3662671 -3.3081836 2.7 3.9 0.6
2 2.995 3.0015 -3.9477432 -3.9985552 2.7 3.301 0.3
3 3.1425 3.1525 -5.7966545 -5.7920936 2.995 3.301 0.15075
4 2.9995 3.15125 -5.3956845 -5.4206115 3.06875 3.1625 0.04687
5 3.1118125 3.1138125 -5.7344664 -5.7448499 3.074375 3.15125 0.03844
6 3.1305312 3.1325312 -5.8005444 -5.8034734 3.1118125 3.15125 0.01972
7 3.1398906 3.1418906 -5.8073633 -5.8065477 3.1305312 3.15125 0.01036
8 3.1352109 3.1372109 -5.8061441 -5.8072013 3.1305312 3.1418906 5.67969E-3
9 3.1309766 3.1509766 -5.8073015 -5.8074223 3.1352109 3.1418906 3.33984E-3
10 3.1387207 3.1407207 -5.8074693 -5.807122 3.1375508 3.1465703 2.16992E-3
11 3.1381357 3.1401357 -5.8074196 -5.8073064 3.1375508 3.1407207 1.585E-3
12 3.1384282 3.1404282 -5.807453 -5.8072227 3.1381357 3.1407207 1.292E-3

|a-b|=0.001<= ε, x*=(a+b)/2=3.139282, f(x*)=-5.8074527


Рисунок 1 – Результат выполнения программы (Метод дихотомии).


Информация о работе «Сравнительный анализ методов оптимизации»
Раздел: Математика
Количество знаков с пробелами: 48110
Количество таблиц: 9
Количество изображений: 8

Похожие работы

Скачать
110516
5
18

... МП к некритическому экстраполированию результата считается его слабостью. Сети РБФ более чувствительны к «проклятию размерности» и испытывают значительные трудности, когда число входов велико. 5. МОДЕЛИРОВАНИЕ НЕЙРОННЫХ СЕТЕЙ ДЛЯ ПРОГНОЗИРОВАНИЯ СТОИМОСТИ НЕДВИЖИМОСТИ   5.1 Особенности нейросетевого прогнозирования в задаче оценки стоимости недвижимости Использование нейронных сетей можно ...

Скачать
161484
23
0

... с издержками двух или трех конкурентов. Это позволит выявить конкурентоспособность предприятия, определить имеющиеся резервы для снижения издержек. Подобный сравнительный анализ издержек производства на данном предприятии и предприятиях-конкурентах служит основанием для разработки и проведения стратегических мероприятий по снижению издержек производства и оптимизации производственной программы. ...

Скачать
41899
0
0

... от года-x и от номера месяца в году-y следующим образом: F(x)=50-x2+10x-y2+10y. Определите, в каком году и в каком месяце прибыль была максимальной. Зав. кафедрой --------------------------------------------------   Экзаменационный билет по предмету МЕТОДЫ ОПТИМИЗАЦИИ Билет № 22 1) Постановка вариационной задачи с ограничениями. Привести пример. 2) Дайте геометрическую ...

Скачать
137570
20
2

... ) аппарат, а затем полученную величину корректируют с учетом других факторов (долгосрочная стратегия предприятия, ограничения по производственным мощностям и пр). 3. Рекомендации по оптимизации величины себестоимости продукции на основе анализа соотношения "затраты - объем - прибыль" 3.1 Деление затрат на постоянные и переменные части и определение показателей маржинального дохода ...

0 комментариев


Наверх