1.2 Метод золотого сечения

Метод золотого сечения. Рассмотрим такое симметричное расположение точек x1 и х2 на отрезке [а; b], при котором одна из них становится пробной точкой и на новом отрезке, полученном после исключения части исходного отрезка. Использование таких точек позволяет на каждой итерации метода исключения отрезков, кроме первой, ограничиться определением только одного значения f (x), так как другое значение уже найдено на одной из предыдущих итераций.

Найдем точки x1 и х2 , обладающие указанным свойством.

Рассмотрим сначала отрезок [0; 1] и для определенности предположим, что при его уменьшении исключается правая часть этого отрезка. Пусть х2 = t, тогда симметрично расположенная точка х1 = 1–t (рис. 2.7).


Рис. 2.7. Определение пробных точек в методе золотого сечения

Пробная точка х1 отрезка [0; 1] перейдет в пробную точку х2¢ = 1–t нового отрезка [0; т]. Чтобы точки х2 = t, и х2¢ = 1–t делили отрезки [0; 1] и [0; t] в одном и том же отношении, должно выполняться равенство

или

,

откуда находим положительное значение

Таким образом,

х1 = 1–t = , .

Для произвольного отрезка [а; b] выражения для пробных точек примут вид


;

В таблице 2 приведено решение задания по варианту.

Опишем алгоритм метода золотого сечения.

Шаг 1. Найти х1 и х2 по формулам (2.15). Вычислить f (x1) и f (x2). Положить  ,

.

Шаг 2. Проверка на окончание поиска: если en > e, то перейти к шагу 3, иначе – к шагу 4.

Шаг 3. Переход к новому отрезку и новым пробным точкам. Если f (x1) £ f (x2) то положить b=x2 , x2=x1 , f (x2) £ f (x1), x1=b–t(b–a) и вычислить f (x1), иначе – положить a=x1, x1= x2 , f (x1) = f (x2), x2=b+t(b–a) и вычислить f (x2). Положить en = ten и перейти к шагу 2.

Шаг 4. Окончание поиска: положить

, .

Результаты вычислений на остальных итерациях представлены в таблице 2 .


Таблица 2 - Метод золотого сечения

№ шага a b x1 x2 F(x1) F(x2)

1 2.7 3.9 3.1584 3.4416 -5.7694 1.79829 0.370820393
2 2.7 3.4416 2.98329 3.1583 -3.1542 -5.7698 0.229179607
3 2.9833 3.4416 3.158365 3.26652 -5.76957 -4.22659
4 2.98329 3.266546 3.09148 3.15833 -5.58444 -5.769704
5 3.09148 3.26652 3.15835 3.199661 -5.76962 -5.43999
6 3.09148 3.19966 3.13281 3.15834 -5.8039 -5.76967
7 3.09148 3.15834 3.11702 3.132801 -5.7600 -580399
8 3.11702 3.15834 3.13281 3.14256 -5.8039 -5.80627
9 3.13281 3.15834 3.14256 3.14859 -5.8063 -5.7982
10 3.13281 3.14859 3.1388 3.14856 -5.08076 -5.8063
11 3.13281 3.14256 3.13653 3.13883 -5.8071 -5.8076
12 3.13653 3.142557 3.13883 3.140255 -5.80764 -5.80745
13

|a-b|=7.893370498E-3< ε, x*=(a+b)/2=3.1407091

f(x*)=-5.807126299

Сравнив два метода, мы видим, что для данной функции лучше подходит метод дихотомии, т.к. он быстрее приводит к оптимальному решению.



Информация о работе «Сравнительный анализ методов оптимизации»
Раздел: Математика
Количество знаков с пробелами: 48110
Количество таблиц: 9
Количество изображений: 8

Похожие работы

Скачать
110516
5
18

... МП к некритическому экстраполированию результата считается его слабостью. Сети РБФ более чувствительны к «проклятию размерности» и испытывают значительные трудности, когда число входов велико. 5. МОДЕЛИРОВАНИЕ НЕЙРОННЫХ СЕТЕЙ ДЛЯ ПРОГНОЗИРОВАНИЯ СТОИМОСТИ НЕДВИЖИМОСТИ   5.1 Особенности нейросетевого прогнозирования в задаче оценки стоимости недвижимости Использование нейронных сетей можно ...

Скачать
161484
23
0

... с издержками двух или трех конкурентов. Это позволит выявить конкурентоспособность предприятия, определить имеющиеся резервы для снижения издержек. Подобный сравнительный анализ издержек производства на данном предприятии и предприятиях-конкурентах служит основанием для разработки и проведения стратегических мероприятий по снижению издержек производства и оптимизации производственной программы. ...

Скачать
41899
0
0

... от года-x и от номера месяца в году-y следующим образом: F(x)=50-x2+10x-y2+10y. Определите, в каком году и в каком месяце прибыль была максимальной. Зав. кафедрой --------------------------------------------------   Экзаменационный билет по предмету МЕТОДЫ ОПТИМИЗАЦИИ Билет № 22 1) Постановка вариационной задачи с ограничениями. Привести пример. 2) Дайте геометрическую ...

Скачать
137570
20
2

... ) аппарат, а затем полученную величину корректируют с учетом других факторов (долгосрочная стратегия предприятия, ограничения по производственным мощностям и пр). 3. Рекомендации по оптимизации величины себестоимости продукции на основе анализа соотношения "затраты - объем - прибыль" 3.1 Деление затрат на постоянные и переменные части и определение показателей маржинального дохода ...

0 комментариев


Наверх