3.1 Метод простой итерации
Этот метод широко используется для численного решения уравнений и их систем различных видов. Рассмотрим применение метода простой итерации к решению систем линейных уравнений.
Запишем исходную систему уравнений в векторно-матричном виде , где A- квадратная невырожденная матрица. Затем необходимо преобразовать систему к виду
x=Bx+c,
где В- квадратная матрица с элементами bij (I,j=1,2,3…m) c- вектор-столбец с элементами ci (i=1,2,3…m)
В развёрнутой форме записи система имеет вид:
x1=b11x1+b12x2+b13x3+…b1mxm+c1
x2=b21x1+b22x2+b23x3+…b2mxm+c1
x3=b31x1+b32x2+b33x3+…b1mxm+c3
xm=bm1x1+bm2x2+bm3x3+…bmmxm+cm
Операция приведения системы к виду, удобному для итераций не является простой и требует специальных знаний. В некоторых случаях операция преобразования не имеет смысла, так как система бывает уже приведена к удобному для итераций виду.
Самым простым способом приведения системы к такому виду является тот, что описан ниже:
И первого уравнения системы выразим x1:
x1=a11-1(b1-a12x2- a13x3-…- a1mxm)
Из второго уравнения системы выразим x2:
x2=a22-1(b2-a21x2- a23x3-…- a2mxm)
xm=amm-1(bm-am1x2- am3x3-…- am-1mxm-1)
В результате получим систему:
x1=0+ b12x2+ b13x3-…+ b1m-1xm-1+ b1mxm+c1
x2= b21x2+0 +b23x3+…+ b2m-1xm-1+ b2mxm+c2
xm= bm1x1+ bm2x20 +bm3x3+…+ bmm-1xm-1+ 0+cm
в которой, на главной диагонали матрицы B находятся нулевые элементы, стальные элементы выражаются по формулам:
bij=-aij/aii ci=bi/aii (i,j=1,2,3…m, i<>j)
Итерационный процесс продолжается до тех пор , пока значения х1(k) , х2(k) , х3(k) не станут близкими с заданной погрешностью к значениям х1(k-1) , х2(k-1) , х3(k-1) .
Для возможности выполнения данного преобразования необходимо, чтобы диагональные элементы матрицы А были ненулевыми.
Часто систему преобразуют к виду x=x-(Ax-b), где -специально выбираемый числовой параметр.
Описание метода:
Выберем начальное приближение x0=( x01 x02… x0m)
подставляя его в праву часть системы
x=Bx+c,
и вычисляя полученное выражение, находим первое приближение:
x1=Bx0+c
на втором шаге подставляем приближение x1 в правую часть той же системы, получим второе приближение:
x2=Bx1+c
Продолжая этот процесс далее, получим последовательность x1 x2 x3… xn приближений, вычисляемых по формуле :
Эта формула и выражает собой метод простой итерации.
Итерационный процесс продолжается до тех пор, пока значения х(k) не станут близкими с заданной погрешностью к значениям х(k-1).
Теорема. Метод простой итерации сходится тогда и только тогда, когда все собственные числа матрицы по модулю меньше единицы, т.е. либо .Эти выражения являются условиями сходимости метода итераций
3.2 Метод Зейделя
Метод Зейделя можно использовать как модификацию метода простых итераций. Основная идея модификации состоит в том, что при вычислении очередного (k+1)-го приближения к известному xi при i>1 используют используются уже найденные приближения к известным x1,… xi-1, а не k-е приближение как в методе простых итераций.
На (k+1)-й итерации компоненты приближения вычисляются по формулам:
Условие сходимости метода Зейделя заключается в том, что матрица A системы Ax=b, должна удовлетворять условию:
модуль диагонального элемента должен быть больше суммы модулей оставшихся элементов строки или столбца.
Если данное условие выполнено, необходимо проследить, чтобы система была приведена к виду, удовлетворяющему решению методом простой итерации и выполнялось необходимое условие сходимости метода итераций:
, либо
3.3 Практическое применение метода простых итераций для решения системы уравнений
Решим систему линейных уравнений методом простых итераций с точностью равной .
Выполним проверку на условие сходимости:
Условие выполнено, можно приступать к вычислению нулевого шага:
Начнем итерационный процесс, используя результаты начального приближения:
Проверим выполняется ли условие остановки итерационного процесса::
Условие остановки на первом шаге итерации не было выполнено, поэтому продолжаем итерацию, вычисляя x(2) :
Проверим выполняется ли условие остановки итерационного процесса::
Условие остановки на втором шаге итерации не было выполнено, поэтому продолжаем итерацию, вычисляя x(3) :
Проверим выполняется ли условие остановки итерационного процесса::
Условие остановки на третьем шаге итерации было выполнено лишь для x4, поэтому продолжаем итерацию, вычисляя x(4) :
Проверим выполняется ли условие остановки итерационного процесса:
Сходимость в сотых долях имеет место уже на 4-ом шаге, тогда можно принять
... уравнений (2) сводится к последовательному решению двух следующих систем уравнений с треугольными матрицами коэффициентов L Y = B; (6) U X = Y (7) линейный алгебраический уравнение численный где Y = - вектор вспомогательных переменных. Такой подход позволяет многократно решать системы линейных ...
... 4 - график унимодальной, но не выпуклой функции Таким образом, кроме перечисленных свойств, выпуклые функции обладают также и всеми свойствами унимодальных функций. 2. Прямые методы безусловной оптимизации Для решения задачи минимизации функции f (х) на отрезке [а; b] на практике, как правило, применяют приближенные методы. Они позволяют найти решение этой задачи с необходимой точностью ...
... – остаточный член, характеризующий погрешность формулы. Заметим, что формулы вида (2) называют квадратурными формулами. Геометрический смысл численного интегрирования состоит в вычислении площади криволинейной трапеции, ограниченной графиком функции f(х), осью абсцисс и двумя прямыми х = а и х = b. Приближенное вычисление площади приводит к отбрасыванию в квадратурных формулах остаточного члена ...
... задачи, а именно: 1. Создана расчетная схема анализа на основании сравнительного анализа численных методов, а также программных и технических средств их осуществления; 2. Создан выбор метода автоматизированного анализа объекта проектирования; 3. Спланирован и проведен эксперимент, анализируя результаты которого, приходим к выводу, что данная модель может использоваться с параметрами: r = 5 R = ...
0 комментариев