3.4 Практическое применение метода Зейделя для решения системы уравнений
Решим ту же систему линейных уравнений методом Зейделя с той же точностью : .
Проверку на условие сходимости мы выполнили ранее, при решении методом простых итерации.
Проверим выполняется ли условие остановки итерационного процесса:
:
Условие остановки на первом шаге итерации не было выполнено, поэтому продолжаем итерацию, вычисляя x(2) :
Проверим выполняется ли условие остановки итерационного процесса:
:
Условие остановки на втором шаге итерации было выполнено лишь для x3, x4, поэтому продолжаем итерацию, вычисляя x(3) :
Проверим выполняется ли условие остановки итерационного процесса:
:
Условие сходимости выполнено на 3-ем шаге .
Корнями уравнения можно принять:
Как видно из вышеизложенных вычислений, скорость сходимости итерационного метода Зейделя выше, чем скорость сходимости метода простой итерации.
Ниже приведена сравнительная таблица1, позволяющая сравнить результаты решения СЛАУ методом простой итерации и методом Зейделя на различных шагах итерации:
Таблица1. Сводная таблица значений элементов приближений двух методов итерации
№ шага | Метод постой итерации | Метод Зейделя |
0 | X1=1.04 X2=1.3 X3=1.45 X4=1.55 | X1=1.04 X2=1.3 X3=1.45 X4=1.55 |
1 | X1=0.75 X2=0.95 X3=1.14 X4=1.36 | X1=0.75 X2=0.9674 X3=1.1976 X4=1.40402 |
2 | X1=1.8106 X2=1.0117 X3=1.2117 X4=1.4077 | X1=0.8019 X2=0.99956 X3=1.19956 X4=1.39999 |
3 | X1=0.7978 X2=0.9977 X3=1.1975 X4=1.3983 | X1=0.80006 X2=0.00002 X3=1.19999 X4=1.39997 |
4 | X1=0.80046 X2=0.000502 X3=1.20052 X4=1.40034 |
... уравнений (2) сводится к последовательному решению двух следующих систем уравнений с треугольными матрицами коэффициентов L Y = B; (6) U X = Y (7) линейный алгебраический уравнение численный где Y = - вектор вспомогательных переменных. Такой подход позволяет многократно решать системы линейных ...
... 4 - график унимодальной, но не выпуклой функции Таким образом, кроме перечисленных свойств, выпуклые функции обладают также и всеми свойствами унимодальных функций. 2. Прямые методы безусловной оптимизации Для решения задачи минимизации функции f (х) на отрезке [а; b] на практике, как правило, применяют приближенные методы. Они позволяют найти решение этой задачи с необходимой точностью ...
... – остаточный член, характеризующий погрешность формулы. Заметим, что формулы вида (2) называют квадратурными формулами. Геометрический смысл численного интегрирования состоит в вычислении площади криволинейной трапеции, ограниченной графиком функции f(х), осью абсцисс и двумя прямыми х = а и х = b. Приближенное вычисление площади приводит к отбрасыванию в квадратурных формулах остаточного члена ...
... задачи, а именно: 1. Создана расчетная схема анализа на основании сравнительного анализа численных методов, а также программных и технических средств их осуществления; 2. Создан выбор метода автоматизированного анализа объекта проектирования; 3. Спланирован и проведен эксперимент, анализируя результаты которого, приходим к выводу, что данная модель может использоваться с параметрами: r = 5 R = ...
0 комментариев