2. Интегралы вида
где R – рациональная функция, p, q - целые числа, сводятся к интегралам от рациональных функций с помощью подстановки
=t,
где п – общий знаменатель дробей ,,… .
3. Интегралы вида
(6.1)
всегда сводятся к интегралам от рациональных функций с помощью, так называемой, универсальной тригонометрической подстановки
, , ,
х=2arctgt, dx=.
Замечание. Универсальная тригонометрическая подстановка всегда приводит к цели, но в силу своей универсальности она часто требует неоправданно громоздких вычислений. Поэтому во многих случаях удобнее пользоваться другими подстановками. Рассмотрим некоторые из них.
1) Если в интеграле (6.1) R(-sin x, cos x)= - R(sin x, cos x), то удобно делать подстановку cos x=t.
2) Если R(sin x,-cos x)= - R(sin x, cos x), то удобно делать подстановку sin x=t.
3) Если R(-sin x, -cos x)= R(sin x, cos x), то удобно делать подстановку
tg x=t, , ,
х=arctgt, dx=.
4. Рассмотрим более детально интегралы вида
,
где т, п – целые числа.
1) Если т – нечётное положительное число, то удобно делать подстановку cos x=t.
2) Если п – нечётное положительное число, то удобно делать подстановку sin x=t.
3) Если оба показателя т и п – чётные неотрицательные числа, то надо делать понижение степени синуса и косинуса по формулам
, .
4) Для нахождения интегралов вида
,
удобно пользоваться формулами
5. В интегралах
, , ,
надо подынтегральную функцию записать в виде суммы функций с помощью формул
Лекция 14. Тема – Задача о площади криволинейной трапеции. Определённый интеграл его геометрический смысл и свойства.
Формула Ньютона-Лейбница.
План.
1. Задача о площади криволинейной трапеции. Определение и существование определённого интеграла.
2. Геометрический смысл определённого интеграла. Свойства определённого интеграла.
3. Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница.
1. Криволинейной трапецией называется фигура, ограниченная линией у= f(x) и прямыми х=а, х=b, у=0. Будем считать, что f(x)на [a;b].
у у= f(x)
0 а х хх b x
Разобьём отрезок [a;b] произвольным образом на п частей точками а=х<x<…< х< х<… <х=b.
На каждом отрезке [х; х] возьмём произвольную точку и вычислим значение f(). Тогда площадь Sзаштрихованного прямоугольника, будет равна
S= f(), где = х- х.
Площадь S всей трапеции приблизительно равна
S.
Пусть . Естественно считать, что
S. (6.2)
К пределам вида (6.2) приводят много других задач, поэтому возникает необходимость всестороннего изучения таких пределов независимо от конкретного содержания той или иной задачи.
Пусть функция у= f(x) определена на отрезке [a;b]. Разобьём этот отрезок на п произвольных частей точками
а=х<x<…< х< х<… <х=b.
На каждом из созданных отрезков [х; х] возьмём произвольную точку и составим сумму
, где = х- х,
которую будем называть интегральной суммой функции f(x).
Обозначим . Если существует конечный предел интегральной суммы , при , который не зависит ни от способа разбиения отрезка [a;b], ни от выбора точек, то этот предел называется определённым интегралом функции f(x) на отрезке [a;b] и обозначается символом, где функция f(x) называется интегрированной на отрезке [a;b].
То есть, по определению,
=.
Числа а и b называются соответственно нижним и верхним пределом интегрирования.
Относительно существования определённого интеграла имеет место такая теорема
Теорема 6.3. Если функция f(x) ограничена на отрезке [a;b] и непрерывна на нём везде, кроме конечного числа точек, то она интегрируема на этом отрезке.
2. Если f(x), то равен площади соответствующей криволинейной трапеции: =S. Если f(x)<0, то = -S.
Отсюда следует, что если на симметричном относительно начала координат отрезке [-a;а], а>0 задана нечётная функция, то=0. Например, Если функция f(x) чётная, то =2.
Свойства определённого интеграла
Будем считать, что все интегралы, которые рассматриваются, существуют.
1. =. Величина определённого интеграла не зависит от обозначения переменной интегрирования.
2. =0.
3. = -.
4. =+.
5. =А.
6. =.
7. Если на отрезке [a;b] f(x), то .
... (x, y) выполняется неравенство: . При этом, т. е. приращение функции > 0. Определение 3: Точки локальных минимума и максимума называются точками экстремума. Условные Экстремумы При отыскании экстремумов функции многих переменных часто возникают задачи, связанные с так называемым условным экстремумом. Это понятие можно разъяснить на примере функции двух переменных. Пусть заданы функция ...
... p и q, получим некоторые наборы (в зависимости от p и q) на которых функция достигает максимума. 3. Решение задачи с использованием метода покоординатного спуска 3.1 Описание метода покоординатного спуска Изложим этот метод на примере функции трех переменных . Выберем нулевое приближение . Фиксируем значения двух координат . Тогда функция будет зависеть только от одной переменной ; ...
... , Флетчера-Ривса). Методы второго порядка, использующие, кроме того, и информацию о вторых производных функции f (x) (метод Ньютона и его модификации). Метод конфигураций (Хука - Дживса) Следует выделить два этапа метода конфигураций: 1) исследование с циклическим изменением переменных и 2) ускорение поиска по образцам. Исследующий поиск начинается в точке х0, называемой старым базисом. ...
... , что и ошибки эксперимента, то итерации надо прекращать. Поскольку вблизи минимума чаще всего ~, то небольшая погрешность функции приводит к появлению довольно большой области неопределенности ~. 2. Минимум функции многих переменных 2.1 Рельеф функции Основные трудности многомерного случая удобно рассмотреть на примере функции двух переменных . Она описывает некоторую поверхность в ...
0 комментариев