2. Комплексным числом называется выражение
, (7.10)
где х, у – действительные числа, а символ i – мнимая единица, которая определяется условием . При этом число х называется действительной частью комплексного числа z и обозначается , а у – мнимой частью z и обозначается (от французских слов: reel – действительный, imaginare – мнимый). Выражение (7.10) называется алгебраической формой комплексного числа.
Два комплексных числа и , которые отличаются только знаком мнимой части, называются сопряжёнными.
Два комплексных числа и считаются равными тогда и только тогда, когда равны их действительные и мнимые части:
Комплексные числа можно изображать на плоскости. Так число (7.10) изображается в прямоугольной системе координат точкой М(х;у). Такая плоскость называется комплексной плоскостью переменной z, ось Ох называется действительной, у
а ось Оу – мнимой.
При у=0 комплексное число является одновременно
у М(х;у)
действительным числом. Поэтому действительные числа являются
отдельным случаем комплексных, они изображаются на оси Ох.
Комплексные числа , в которых х=0, называются чисто
мнимыми; такие числа изображаются на оси Оу.
0 х х
Полярные координаты точки М(х;у) на комплексной плоскости называются модулем и аргументом комплексного числа и обозначаются
Поскольку , то по формуле (7.10) имеем
.
Это выражение называется тригонометрической формой комплексного числа z.
Модуль комплексного числа определяется однозначно, а аргумент – с точностью до 2:
.
Здесь - общее значение аргумента, а - главное значение аргумента, которое находится на промежутке [0; и отсчитывается от оси Ох против часовой стрелки.
Если , то считают, что а - неопределён.
Арифметические действия над комплексными числами, заданными в алгебраической форме, выполняются по обычным правилам действий над двучленами с учётом того, что . Так, если
, , то
1)
2)
3)
4) .
Рассмотрим действия над комплексными числами в тригонометрической форме.
Пусть
, .
Тогда
=
Значит, при умножении комплексных чисел их модули перемножаются, а аргументы складываются. Это правило распространяется на произвольное конечное число множителей. В частности,
.
Последняя формула называется формулой Муавра.
При делении комплексных чисел имеем
.
Рассмотрим извлечение корня из комплексного числа. Если для данного комплексного числа надо найти корень п-й степени , то по определению корня и формуле Муавра имеем
.
Отсюда
, .
Поскольку r и положительные, то , где под корнем понимают его арифметическое значение. Поэтому
.
Давая k значения 0,1,2,…, п -1, получим п разных значений корня. Для других значений k аргументы будут отличаться от найденных на число, кратное 2, поэтому значения корня будут совпадать с уже найденными.
Известно, что показательную функцию с мнимым показателем можно выразить через тригонометрические функции по формуле Эйлера . Отсюда следует, что всякое комплексное число можно записать в форме , которая называется показательной формой комплексного числа z.
... (x, y) выполняется неравенство: . При этом, т. е. приращение функции > 0. Определение 3: Точки локальных минимума и максимума называются точками экстремума. Условные Экстремумы При отыскании экстремумов функции многих переменных часто возникают задачи, связанные с так называемым условным экстремумом. Это понятие можно разъяснить на примере функции двух переменных. Пусть заданы функция ...
... p и q, получим некоторые наборы (в зависимости от p и q) на которых функция достигает максимума. 3. Решение задачи с использованием метода покоординатного спуска 3.1 Описание метода покоординатного спуска Изложим этот метод на примере функции трех переменных . Выберем нулевое приближение . Фиксируем значения двух координат . Тогда функция будет зависеть только от одной переменной ; ...
... , Флетчера-Ривса). Методы второго порядка, использующие, кроме того, и информацию о вторых производных функции f (x) (метод Ньютона и его модификации). Метод конфигураций (Хука - Дживса) Следует выделить два этапа метода конфигураций: 1) исследование с циклическим изменением переменных и 2) ускорение поиска по образцам. Исследующий поиск начинается в точке х0, называемой старым базисом. ...
... , что и ошибки эксперимента, то итерации надо прекращать. Поскольку вблизи минимума чаще всего ~, то небольшая погрешность функции приводит к появлению довольно большой области неопределенности ~. 2. Минимум функции многих переменных 2.1 Рельеф функции Основные трудности многомерного случая удобно рассмотреть на примере функции двух переменных . Она описывает некоторую поверхность в ...
0 комментариев