2. Дифференциальное уравнение вида
называется дифференциальным уравнением с разделёнными переменными.
Чтобы найти его общее решение, достаточно проинтегрировать обе его части.
.
Дифференциальное уравнение вида
называется дифференциальным уравнением с разделяющимися переменными.
Чтобы найти его общее решение, надо сначала отделить переменные
а затем проинтегрировать
Пример 7.4. Найти общее решение уравнения
Решение. Сначала отделим переменные
,
а затем проинтегрируем
, , у=Сlnx.
3. Функция называется однородной функцией п-го измерения относительно переменных х и у, если для произвольного числа выполняется тождество
Пример 7.5.
1) =,
- однородная функция третьего измерения.
2) =- однородная функция нулевого измерения.
Уравнение y’=называется однородным дифференциальным уравнением первого порядка, если функция является однородной функцией нулевого измерения, то есть, если
(7.2)
Очевидно, уравнение вида
будет однородным тогда и только тогда, когда функции Р(х,у) и Q(х,у), будут однородными функциями одного и того же измерения. Например, уравнение
однородное. Считая, в соотношении (7.2) , получим
Поэтому можно дать ещё одно определение однородного уравнения: однородным дифференциальным уравнением называется уравнение вида
(7.3)
Применим в уравнении (7.3) подстановку
, ,
Тогда получим уравнение с разделяющимися переменными
,
которое всегда интегрируется в квадратурах:
,
.
После интегрирования надо сделать обратную замену, то есть вместо и нужно подставить
Вывод. Однородные дифференциальные уравнения первого порядка всегда сводятся к уравнениям с разделяющимися переменными подстановкой ,.
Пример 7.6. Найти общее решение уравнения
Решение. Применим подстановку ,. Тогда получим
,
, ,
, , .
Пример 7.7. Решить задачу Коши
, у(1)=2.
Решение. Поскольку обе функции
однородные измерения два, то данное уравнение однородное. Запишем его в виде
и применим подстановку ,. Тогда получим
,
, , .
Из начального условия найдём постоянную интегрирования:
Подставив найденное значение С в общее решение, получим решение задачи Коши:
Лекция 16. Тема – Уравнения Бернулли. Комплексные числа. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.
План.
1.Линейные дифференциальные уравнения первого порядка. Уравнения Бернулли.
2. Комплексные числа.
3. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.
1. Линейным дифференциальным уравнением первого порядка называется уравнение вида
(7.4)
где - известные функции переменной х.
Термин «линейное уравнение» поясняется тем, что неизвестная функция у и её производная у’ входят в уравнение в первой степени, то есть линейно.
Линейное дифференциальное уравнение первого порядка всегда интегрируемо в квадратурах, поскольку его можно всегда свести к двум уравнениям с разделяющимися переменными таким образом (методом Бернулли).
Будем искать решение уравнения (7.4) в виде произведения
(7.5)
где - неизвестные функции х. Находя производную
и подставляя значение у и у’ в уравнение (7.5), получим
(7.6)
Выберем функцию так, чтобы выражение в скобках равнялось нулю. Для этого надо решить уравнение с разделяющимися переменными.
Решая его, находим
. (7.7)
Постоянную интегрирования в выражении (7.7) не пишем, поскольку нам достаточно найти только какую-нибудь одну функцию , которая преобразовывает в ноль выражение в скобках в уравнении (7.6).
Подставляя (7.7) в (7.6), получим
(7.8)
Подставляя (7.7) и (7.8) в (7.5), найдём общее решение уравнения (7.4):
(7.9)
Замечание. На практике помнить формулу (7.9) не обязательно: достаточно лишь помнить, что линейные дифференциальные уравнения первого порядка, а также уравнения Бернулли, решаются методом Бернулли с помощью подстановки .
Уравнением Бернулли называется уравнение вида
где - известные функции х, .
... (x, y) выполняется неравенство: . При этом, т. е. приращение функции > 0. Определение 3: Точки локальных минимума и максимума называются точками экстремума. Условные Экстремумы При отыскании экстремумов функции многих переменных часто возникают задачи, связанные с так называемым условным экстремумом. Это понятие можно разъяснить на примере функции двух переменных. Пусть заданы функция ...
... p и q, получим некоторые наборы (в зависимости от p и q) на которых функция достигает максимума. 3. Решение задачи с использованием метода покоординатного спуска 3.1 Описание метода покоординатного спуска Изложим этот метод на примере функции трех переменных . Выберем нулевое приближение . Фиксируем значения двух координат . Тогда функция будет зависеть только от одной переменной ; ...
... , Флетчера-Ривса). Методы второго порядка, использующие, кроме того, и информацию о вторых производных функции f (x) (метод Ньютона и его модификации). Метод конфигураций (Хука - Дживса) Следует выделить два этапа метода конфигураций: 1) исследование с циклическим изменением переменных и 2) ускорение поиска по образцам. Исследующий поиск начинается в точке х0, называемой старым базисом. ...
... , что и ошибки эксперимента, то итерации надо прекращать. Поскольку вблизи минимума чаще всего ~, то небольшая погрешность функции приводит к появлению довольно большой области неопределенности ~. 2. Минимум функции многих переменных 2.1 Рельеф функции Основные трудности многомерного случая удобно рассмотреть на примере функции двух переменных . Она описывает некоторую поверхность в ...
0 комментариев