2.  Несобственные интегралы от неограниченных функций (несобственные интегралы ІІ рода).

Если функция f(x) неограничена в любой окрестности точки с(a;b) и непрерывна при , и , то по определению считают

=+ . (6.6)

Если оба предела в правой части равенства (6.6) существуют и конечны, то несобственный интеграл считают сходящимся, в противном случае – расходящимся.

Если функция f(x) неограничена только на одном из концов отрезка [a;b], то соответствующие определения несобственного интеграла ІІ рода упрощаются:

=,

если функция f(x) неограничена в точке х=а, и

=,

если функция f(x) неограничена в точке х=b.


Лекция 15. Тема – Дифференциальные уравнения. Дифференциальные уравнения с разделяющимися переменными, однородные дифференциальные уравнения.

 

План.

1. Основные понятия.

2. Дифференциальные уравнения с разделяющимися переменными.

3. Однородные дифференциальные уравнения.

1. Дифференциальными уравнениями называют уравнения, которые содержат неизвестную функцию, её производные и аргументы.

Обыкновенным называется дифференциальное уравнение, в котором неизвестная функция является функцией одной переменной. Если неизвестная функция является функцией многих переменных, то соответствующее уравнение называется дифференциальным уравнением в частных производных.

Порядком дифференциального уравнения называется наивысший порядок производной, которая входит в это уравнение.

Пример 7.1.

1)  - обыкновенное дифференциальное уравнение І порядка.

2) - обыкновенное дифференциальное уравнение ІІІ порядка.

3) +=0 - дифференциальное уравнение в частных производных ІІ порядка (уравнение Лапласа).

Далее будем рассматривать только обыкновенные дифференциальные уравнения.

Наиболее общий вид дифференциального уравнения І порядка такой:

F(x,у,у’)=0. (7.1)

Решением этого уравнения на некотором промежутке называется дифференцированная на этом промежутке функция , которая при подстановке её в уравнение превращает его в тождество.

Пример 7.2. Решить уравнение .

Решение.

= у, =, ln = x+ln, у=Сех.

Получили множество решений.

у

 С=2

С=1

2

1 С=0

0

-1 С= -1

-2

С=-2

Функция , где С – произвольная постоянная, называется общим решением уравнения (7.1) в области D, если:

1)  функция является решением уравнения (7.1) для всех значений переменной С из некоторого множества;

2)  для произвольной точки () существует единственное значение С=С0, при котором функция удовлетворяет начальному условию

Решение , полученное из общего решения при С=С0, называется частным решением уравнения (7.1).

С геометрической точки зрения решение определяет некоторое бесконечное множество кривых, которые называются интегральными кривыми данного уравнения. Частное решение определяет только одну интегральную кривую, которая проходит через точку с координатами ().

Если общее решение уравнения (7.1) найдено в неявном виде Ф(х,у,С)=0, то такое решение называют общим интегралом дифференциального уравнения; равенство Ф(х,у,С0)=0 называют частным интегралом дифференциального уравнения.

Значит, для уравнения (7.1) можно поставить две задачи:

1)  найти общее решение уравнения (7.1);

2)  найти частное решение уравнения (7.1), которое удовлетворяет начальному условию .

Вторая задача называется задачей Коши для обыкновенного дифференциального уравнения І порядка.

Пример 7.3. Решить задачу Коши

, у(0)=2.

Решение. Сначала ищем общее решение дифференциального уравнения: у=Сех.

Из начального условия имеем: 2= Се0  .

Решением задачи Коши является такая функция: у=2ех.

Если уравнение (7.1) можно решить относительно у’, то его записывают в виде

и называют уравнением первого порядка, решенным относительно производной, или уравнением в нормальной форме.

Теорема 7.1 (существования и единственности решения задачи Коши). Если функция  непрерывна в некоторой области D, которая содержит точку М(), то задача Коши

,

имеет решение. Если, кроме этого, в точке М непрерывна частная производная , то это решение единственное.

Процесс нахождения решений дифференциальных уравнений называется интегрированием этих уравнений. Если этот процесс сводится к алгебраическим операциям и вычислению конечного числа интегралов и производных, то говорят, что уравнение интегрируется в квадратурах. Однако класс таких уравнений очень ограничен. Поэтому для решения дифференциальных уравнений широко применяют разные приближённые методы интегрирования дифференциальных уравнений с использованием вычислительной техники.

Рассмотрим некоторые типы уравнений, интегрируемых в квадратурах.


Информация о работе «Функция многих переменных»
Раздел: Математика
Количество знаков с пробелами: 40147
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
14269
0
4

... (x, y) выполняется неравенство: . При этом, т. е. приращение функции > 0. Определение 3: Точки локальных минимума и максимума называются точками экстремума. Условные Экстремумы При отыскании экстремумов функции многих переменных часто возникают задачи, связанные с так называемым условным экстремумом. Это понятие можно разъяснить на примере функции двух переменных. Пусть заданы функция ...

Скачать
19131
0
6

... p и q, получим некоторые наборы (в зависимости от p и q) на которых функция достигает максимума. 3. Решение задачи с использованием метода покоординатного спуска   3.1 Описание метода покоординатного спуска Изложим этот метод на примере функции трех переменных . Выберем нулевое приближение . Фиксируем значения двух координат . Тогда функция будет зависеть только от одной переменной ; ...

Скачать
34366
0
16

... , Флетчера-Ривса). Методы второго порядка, использующие, кроме того, и информацию о вторых производных функции f (x) (метод Ньютона и его модификации). Метод конфигураций (Хука - Дживса) Следует выделить два этапа метода конфигураций: 1) исследование с циклическим изменением переменных и 2) ускорение поиска по образцам. Исследующий поиск начинается в точке х0, называемой старым базисом. ...

Скачать
28673
2
2

... , что и ошибки эксперимента, то итерации надо прекращать. Поскольку вблизи минимума чаще всего ~, то небольшая погрешность функции приводит к появлению довольно большой области неопределенности ~. 2. Минимум функции многих переменных   2.1 Рельеф функции Основные трудности многомерного случая удобно рассмотреть на примере функции двух переменных . Она описывает некоторую поверхность в ...

0 комментариев


Наверх