1.2. Использование основных теорем дифференциального исчисления
при доказательстве неравенств
ТЕОРЕМА 1 (Ролля).Пусть функция f:[a,b]®R удовлетворяет условиям:
1) fÎC[a,b]; 2) "xÎ(a,b) существует f/(x); 3) f(a)=f(b). Тогда $CÎ(a,b): f/(C)=0.
Геометрический смысл теоремы Ролля: при выполнении условий 1)-3) теоремы на интервале (a,b) существует точка С, в которой касательная к графику функции параллельна оси абсцисс. На практике чаще используется следующее утверждение теоремы Ролля: между любыми двумя нулями дифференцируемой функции существует хотя бы один нуль у производной.
ТЕОРЕМА 2 (Лагранжа про среднее значение, или про конечное приращение). Допустим что функция f:[a,b]®R удовлетворяет условиям:
1) fÎC[a,b]; 2) "xÎ(a,b) существует f/(x). Тогда $CÎ(a,b): f(b)-f(a)=f/(C)(b-a).
Отношение (f(b)-f(a))/(b-a) есть тангенс угла наклона к оси абсцисс секущей, которая проходит через точки (a, f(a)), (b, f(b)). Геометрический смысл теоремы Лагранжа: при выполнении условий 1)-2) теоремы на интервале (a,b) существует точка С, в которой касательная к графику функции в точке (C, f(C)) параллельна секущей.
Следствие 1. Пусть функція f:[a,b]®R имеет производную f/ на (a,b) і "xÎ(a,b) f/(x)=0. Тогда для некоторого LÌ R "xÎ(a,b) f(x)=L.
Следствие 2. Функции f:[a,b]®R, g:[a,b]®R имеют произодныеі f/ и g/ на (a,b) и "xÎ(a,b) f/(x)=g/(x). Тогда для некоторого числа LÌ R "xÎ(a,b): f(x)=g(x)+L.
Следствие 3. Пусть функция f:[a,b]®R имеем производную f/ на (a,b) и для некоторого LÌ R "xÎ(a,b) f/(x)=L. Тогда для некоторого MÌ R "xÎ(a,b): f(x)=Lx+M.
ТЕОРЕМА 3 (Коши). Пусть функции f:[a,b]®R, g:[a,b]®R удовлетворяют условиям: 1) f, gÎC[a,b]; 2) "xÎ(a,b) существуют производныеі f/ и g/ ; 3) "xÎ(a,b) g/(x)¹0.
Тогдаі $CÎ(a,b): (f(b)-f(a))/(g(b)-g(a))=f/(C)/g/(C).
Теорема Лагранжа – это частный случай теоремы Коши при g(x)=x, xÎ[a,b].
Задача 1.5. Доказать, что для любых x, y Ì R: ½sin x – sin y½£½x–y½; x, y Ì R: ½cos x – cos y½£½x–y½; x, y Ì R: ½arctg x – arctg y½£½x–y½;
x, y Ì [1; +¥): ½Öx – Öy½£ 0.5½x–y½.
Доказательство этих неравенств аналогичное. Поэтому рассмотрим доказательство первого неравенства. Пусть, например x<y. К фунции sin применим на отрезке [x,y] теорему Лагранжа:
$CÎ(x,y): ½sin x – sin y½=½cos C½(x–y). Учитывая неравенство ½cos u½£1, uÎR, получим требуемое неравенство.
Задача 1.6. Доказать, что для любого x Ì R: ex ³ 1+x, причем равенство может быть тогда и только тогда, когда x=0.
Пусть сначала x>0. По теореме Лагранжа для функции f(u)=eu, uÎ[0,x],
$CÎ(0,x): ex – e0 = eC(x-0)>x, так как eC>1 для C>0. Если x<0, то теорему Лагранжа используем для функции f(u)=eu, uÎ[x,0]. Имеем $CÎ(x,0): e0 – ex = eC(0-x)<–x, так как –x>0, а eC<1 для C<0. Таким образом, при x¹0 имеем ex > 1+x.
Задача 1.7. Доказать, что для любого x >0: ex>1+x+(x2/2).
Для доказательства неравенства применим теорему Коши к функциям
f(u)=eu, g(u)=1+u+(u2/2), uÎ[0,x]. Получим $CÎ(0,x): (ex – e0)/(1+x+(x2/2)–1) = eC/(1+c). Учитывая доказанное неравенство, найдем (ex-1)/(x+(x2/2))>1, откуда ex>1+x+(x2/2).
Задача 1.8. Доказать, что для 0<x<p/2 выполняется sin x > (2/p)x.
Пусть f(x)=(sin x)/x (0<x£p/2). Производная f/(x)=cos x (x–tg x)/x2 (0<x<p/2) будет отрицательной, так как x<tg x. Таким образом, функция f(x) убывает и f(x)>f(p/2)=2/p, если 0<x<p/2.
Задача 1.9. Доказать, что при x>0 выполняется cos x >1–(1/2)x2.
Функция f(x)=cos x –1+(1/2)x2 равна 0 при x=0. Ее производная, при x>0,
f/(x) = –sin x+x>0 (или sin x< x). Т.е., функция f(x) для x³0 возрастающая, а при x<0 будет f(x)>f(0)=0, т.е. cos x>1–(1/2)x2.
Отсюда, аналогично при x>0 получим sin x>x–(1/6)x3.
Задача 1.10. Доказать, что при 0<x<p/2 выполняется tg x > x+(1/3)x3.
Для этого достаточно установить, что для указанных x производная функции tg x–x–(1/3)x3, равна sec2x–1–x2, положительна, т.е. что tg2x – x2>0, а это приводит к известному неравенству tg x>x.
Задача 1.11. Доказать, что при x>0 выполняется ln x £ x-1.
Так как функция f(x)=ln x–x (x>0) имеет производную f/(x)=(1/x)–1 > 0 (при 0<x<1) и f/(x)=(1/x)–1 < 0 (при x>1), то функция возрастает пока x изменяется на промежутке (0,1], и убывает на промежутке [1;+¥). Отсюда получаем, что f(1)=–1 будет наибольшим значением функции, так что для x>0 выполняется ln x £ x-1.
... сформулированной гипотезы необходимо было решить следующие задачи: 1. Выявить роль тригонометрических уравнений и неравенств при обучении математике; 2. Разработать методику формирования умений решать тригонометрические уравнения и неравенства, направленную на развитие тригонометрических представлений; 3. Экспериментально проверить эффективность разработанной методики. Для решения ...
... точек координатной оси. Занятие № 4. Тема: Аналитический метод. Метод «ветвлений». Цель занятия: познакомить учеников с основным методом решения уравнений, содержащих параметр. Литература для учителя: см. [1] , [5], [6], [7], [14] Литература для ученика: см. [3] Краткое содержание: рассмотрение различных значений, принимаемых параметром. Упрощение уравнения и приведение уравнения к произведению ...
... по алгебре и началам анализа, при подготовке к государственной итоговой аттестации, внешнему независимому оцениванию. Достаточно большое число задач раскрывают потенциальные возможности анализа бесконечно малых величин. 1. Производная и ее применение для решения прикладных задач 1.1 Исторические сведения Ряд задач дифференциального исчисления был решен еще в древности. Они встречались у ...
... выше теорема свидетельствует о важности априорных оценок для доказательства теорем существования и единственности решений. Глава 2. Приложение Пример 1. Рассмотрим интегральное уравнение с малым вещественным параметром λ: (1) Это уравнение вида А()х = у() – операторное уравнение в С[-π; π], где Покажем, что А() аналитична в т. 0, т.е. разлагается в ряд вида . Разложим функцию ...
0 комментариев