2.2. Монотонность интеграла
Из определения интеграла вытекает, что для неотрицательной непрерывной на отрезке [a,b] функции f для всех .
Теорема 1. Пусть функции f и g непрерывны на отрезке [a,b] и для всех . Тогда для всех : . Это свойство называют монотонностью интеграла.
С помощью теоремы 1 почленно проинтегрировав обе части неравенства, можно получить целую серию новых неравенств. Например,
при имеем очевидное неравенство . Применим теорему 1, положив . Функции f, g удовлетворяют условиям теоремы на промежутке . Поэтому для произвольного : , т.е. (1). Применяя тот же метод к неравенству (1), получаем , или . Отсюда . Продолжая аналогично, имеем ,
и т.д.
В рассмотренном примере выбор исходного неравенства не составил труда. В иных случаях этот первый шаг решения задачи не столь очевиден. Теорема 1 дает, по существу, прием для получения исходного неравенства.
Пусть требуется проверить истинность неравенства
(2.4)
Если справедливо соотношение , то согласно теореме 1, имеет место и неравенство
, или (2.5).
Если имеет место неравенство , то, складывая его почленно с (2.4), устанавливаем справедливость неравенства (2.5).
Задача 2.4. Доказать, что при . (2.6)
Решение.
Неравенство (2.6) перепишем в виде . Левая и правая части последнего неравенства представляют собой функции от . Обозначив , получим (2.7). Докажем, что (2.7) выполняется при . Найдем производные обеих частей неравенства (2.7). Соответственно имеем:
. При . Действительно, . Применяя теорему 1 для функций и при , получаем . Так как , то
. Отсюда при , следует (2.6).
Задача 2.5. Доказать, что при : .
Решение.
Вычислим производные левой и правой частей:
Ясно, что , поскольку , . Так как и непрерывные функции, то, согласно теореме 1, имеет место неравенство
, т.е. , . Задача 2.5. решена.
Теорема 1 позволяет устанавливать истинность нестрогих неравенств. Утверждение, содержащееся в ней, можно усилить, если потребовать выполнения дополнительных условий.
Теорема 2. Пусть выполняются условия теоремы 1 и, кроме того, для некоторого имеет место строгое неравенство . Тогда при также имеет место строгое неравенство .
Задача 2.6. Доказать, что при : (2.8).
Решение.
Предварительно следует проверить соответствующее неравенство для производных левой и правой частей, т.е. что , или . Его справедливость при можно установить, если применить теорему 1 к неравенству . Поскольку, кроме того, , то выполняются все условия теоремы 2. Поэтому имеет место строгое неравенство , , или , . После преобразований придем к неравенству (2.8).
... сформулированной гипотезы необходимо было решить следующие задачи: 1. Выявить роль тригонометрических уравнений и неравенств при обучении математике; 2. Разработать методику формирования умений решать тригонометрические уравнения и неравенства, направленную на развитие тригонометрических представлений; 3. Экспериментально проверить эффективность разработанной методики. Для решения ...
... точек координатной оси. Занятие № 4. Тема: Аналитический метод. Метод «ветвлений». Цель занятия: познакомить учеников с основным методом решения уравнений, содержащих параметр. Литература для учителя: см. [1] , [5], [6], [7], [14] Литература для ученика: см. [3] Краткое содержание: рассмотрение различных значений, принимаемых параметром. Упрощение уравнения и приведение уравнения к произведению ...
... по алгебре и началам анализа, при подготовке к государственной итоговой аттестации, внешнему независимому оцениванию. Достаточно большое число задач раскрывают потенциальные возможности анализа бесконечно малых величин. 1. Производная и ее применение для решения прикладных задач 1.1 Исторические сведения Ряд задач дифференциального исчисления был решен еще в древности. Они встречались у ...
... выше теорема свидетельствует о важности априорных оценок для доказательства теорем существования и единственности решений. Глава 2. Приложение Пример 1. Рассмотрим интегральное уравнение с малым вещественным параметром λ: (1) Это уравнение вида А()х = у() – операторное уравнение в С[-π; π], где Покажем, что А() аналитична в т. 0, т.е. разлагается в ряд вида . Разложим функцию ...
0 комментариев